December 1993 Report No. STAN-CS-TR-93-1498
Also numbered KSL-93-69

I AR R

PB96-149109

Diagnosis using Action-Based Hierarchies
for Optimal Real-Time Performance

by

David Ash

- DIESTRIZUTION STATEMENT 8
Approved 17 puniie releqaney

Diembunon Unbmored

S aa—

Department of Computer Science

Stanford University
Stanford, California 94305

19970609 040

|DTIC QUATITY THEFTATED 8




DIAGNOSIS USING ACTION-BASED HIERARCHIES FOR
OPTIMAL REAL-TIME PERFORMANCE

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMI'I'I'EEYON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

By
David Ash
December 1993

DTIC QUALITY Inv CPECTED 8




© Copyright 1994 by David W. Ash
All Rights Reserved




Abstract

To respond effectively in real time, an agent needs to be able to deal
effectively with differing availability of information. In particular, although
the agent ideally would like to be able to diagnose one or more particular faults
that may be present at a given time, a deadline may prevent it from doing so
because prior to the deadline it is required to act or face a catastrophic
outcome. Thus, an agent should have available to it a set of actions some of
which are appropriate, but not optimal, for large classes of faults and some of
which are appropriate for specific faults.

Tests are available to help the agent diagnose a fault; given this framework
decision trees would provide one possible approach to this diagnosis problem.
However this work shows that the information-theoretic heuristic commonly
used to structure decision trees is not ideal in a real time domain because it
concerns itself with reaching a leaf node as fast as possible, not with the value
of the actions it might obtain along the way. My thesis presents an alternative
heuristic, the action-based heuristic, which may be used to structure a
decision tree; the resulting structure together with the actions themselves is
called an action-based hierarchy.

The approach is validated in several ways. First a complexity analysis is
undertaken to show that the complexity of the structuring algorithm is not
prohibitive. Then some theoretical results are given; this is followed by
experiments both with abstract inputs and inputs from a real-time domain,
surgical intensive care unit patient monitoring. The thesis concludes with a
description of an implementation of these ideas in a system known as ReAct.




Acknowledgements

The successful completion of this thesis would not have been possible were it
not for my adviser, Barbara Hayes-Roth. It was Barbara who first suggested to
me the idea of working on the problem of providing response to critical events
in the face of insufficient diagnostic resources. Barbara has helped me
develop my ideas on this problem from vague beginnings to a finished thesis.
During my many discussions with her about my work, she has always been
able to immediately pinpoint the flaw or weak spot in my thinking and
therefore has always encouraged me to improve the quality of my work.
Barbara has also provided the many resources--from computers to contacts in
the medical community--that have been essential to the completion of this
work.

I thank Nils Nilsson for serving on my thesis committee and acting as
my co-adviser. Nils has provided many good pointers to related areas of
research that have proven to be invaluable in sharpening the ideas in this
thesis. In particular, the idea of comparing the value of action-based
hierarchies to that of classical decision trees grew out of a question Nils asked
at one of our committee meetings.

Thanks are also due to David Gaba for serving on my thesis committee.
As the representative of the medical community on my committee, David has
helped to ensure that the problem I attacked, as well as the solution I proposed,
was relevant in the medical domain of application. David also provided
valuable assistance in verifying the accuracy of the medical knowledge base
used as the basis for the domain experiments in this thesis.

Many past and present members of the Adaptive Intelligent Systems
(AIS) group provided valuable feedback during weekly group seminars. In no
particular order, they include Rich Washington, Janet Murdock, Vlad Dabija,
Serdar Uckun, Anne Collinot, Angel Vina, Michael Wolverton, Lee Brownston,
Philippe Morignot, and Adnan Darwiche.

This thesis owes an intellectual debt to the work done on a predecessor
system developed by Adnan Darwiche for his MSAI project in the Knowledge
Systems Laboratory. I have also enjoyed the opportunity to discuss my work
on several occasions with Adnan, and have always benefitted from the

discussions.

iv




My medical colleagues have provided considerable assistance to me in
developing a plausible medical knowledge base. In particular, Garry Gold is
the primary author of the medical knowledge base upon which my
experiments are based. Both David Gaba and Adam Seiver have helped to
ensure the medical validity of the knowledge base. Early discussions with
medical colleagues Ida Sim and Michael Falk helped to formalize the medical
problem.

Helpful comments on this work have been given by a number of people
at different times and for different aspects of the work including Thomas
Dean, Andrew Goldberg, Brad Efron, Victor Lesser, Yuval Shahar, and the
anonymous reviewers of various conference and journal articles.

Financial support has been provided by DARPA through NASA grant
NAG2-581 (ARPA order 8607) and the DSSA project (DARPA contract DAAAZ21-
92-C-0028). Thanks are also due to Edward Feigenbaum for sponsoring the
work at the Knowledge Systems Laboratory.

My friend Ron has been a bastion of support throughout the long
process of obtaining my Ph.D. Although thousands of miles away in Canada, I
have always known that I can call Ron up at any time and count on him to
encourage me no matter how well or badly things might be going at the
present moment.

I thank my friend Kris for always encouraging me to finish my degree
and for many inspiring discussions about the field of artificial intelligence
that we have had. I'd also like to thank Kris and my friend Tamara for the
many fun times we have had together during the time when I was writing this
thesis, without which I would no doubt have gone insane or never even
finished the thesis.

Finally, last but certainly not least, I thank my parents for always
believing in me from when I was a small child right up to the present moment.
Without their constant encouragement, I would no doubt not have even been
in a position to attempt a Ph.D., much less to complete one.




Table of Contents

Chapter 1. INtroducCtion ... sssessnaes
Section 1.1 -- Related WOTK ..criiiiiiiiiiicccnietnnccesneeseene st sesesneceesassneess

Chapter 2. The Problem ... assesenens

Section 2.1 -- Formal Statement Of the ProBIEN1  ....ccceceeereeerecrrssrsseeseesaesssns
Section 2.2 -- Related WOTK oocciiiiiiiiiiieiiccnireeesseevonecssssosecsesssssssesesssssssssnsossssssss

Chapter 3. Action-Based Hierarchies ........erncnens
Section 3.1 -- Hierarchy Structuring HeuristiCS  .....covcvvvreerreerrcereeeeersnnnns
Section 3.2 -- Deadline DiStriDULIONS .....ccoceveeruiririereieeeeeeereeeeeeessnsseneessnens
Section 3.3 -- Multiple Tests at @ TiMEe ....cccceceerirerrrenrercirenreeeereeeneeesesesnen
Section 3.4 -- Non-Disjoint Test OULCOMES ........ccervernrerreerrerrerressersesssnerseses
Section 3.5 -~ Multiple FAUILS ....ccciicoecreerecteeceetceee e eeareseesssese s eseeeesneenas
Section 3.6 - Related WOTK ...ccoiiciiiereeneiecreceeceeecreeeeeeeesessessesresssssasessanees

Chapter 4. Complexity ANalYSiS ... eeeeeeeeeeeeeseeseseseeens
Section 4.1 -- BasiC Problem ........oiveeiminieicnriicinscrcnnsnnnenessnssesessesesssssenes
Section 4.2 -- Deadline DiStIiDULIONS .......eevveeereeerieeeeeesnnreeeeeeseeeeesaeeeeesronne
Section 4.3 -- TeSt PrOMOTION ....ucivceerereeerecrceesscneeseeesrneeesssssressseesssessessessssseses
Section 4.4 -- Non-disjoint TeSt QULCOMES .......ccvveeveeerneeerureesrerseeesseesnessseeens
Section 4.5 -~ MUlItiple FAUILS ....uuviceeciveeicceerecrreeteccnreeeesesssseesessssessssesaesseses

Chapter 5. Formal ReSUlLS ... eeeeeneenenene
Section 5.1 -- Optimal Action-Based Hierarchi€s ........coeeeccceeeeeeeeeerveresennns
Section 5.2 -~ Very Small HIEerarcChi€s ....coccveeevoneiecvieeeeereereeeseresesssessnns
Section 5.3 -- TeSt PTOMOTION ..ccccccvveereereeeeereneeneereieeereseesseessesseeseessenssssssesens

Chapter 6. Abstract EXperiments .......ooeemeeeorsssesesessessens
Section 6.1 -- Experimental DeSIiZN ....cccccccevveveerrereereeneeererreseerenressessesssesesnes
Section 6.2 -- Statistical VAlIdAtiOn .......ccceeeeevereineeneeeneecseneeresesesesescesseesnes
Section 6.3 -- EXperiment ReSUILS ......cccceeeeeeceeeemnnieeeeesnsreeesseessessssesesenenns
Section 6.4 -- Experiments with Deadline DisStributions .....cccceceeeeceeeveeenne
Section 6.5 -- Experiments with Test Promotion .......oeeoeeoreererveeereeeveennes

Chapter 7. Domain EXperiments .........oooeoenneeseossrssressonn
Section 7.1 -- Intensive Care Unit Patient Monitoring  ......ccecevevueevenennee.
Section 7.2 -- Analysis of the DOMAaIN ....ccceeereereirverveneceiereereeseeceeeeeeseseesaeens

7.2.1 Prior Probabilities of the FAults ......cceecveveeereeiereneiniceeenenee
7.2.2 Values of Actions fOr FAUILS ......ccceceeveerevevenveereresrererenessceeesneenens
7.2.3 COStS Of TeSLS..cuvevrrerenrecreenreecrnrennsennens rreeestsnteenessasesaenseeeaaenane
7.2.4 How Tests Divide up the Fault Set .......cueeeevevenserernreenerencnnens
Section 7.3 -- Experiments in the DOMaIN ....ccceeveveveeeecreeeeereeereeseesseeseesnenns
Section 7.4 -- Abstract Experiments with a Similar Structure ................

Chapter 8. Implementation ... seesssessone
Section 8.1 -- ReAct Knowledge SOUICES ......coeeeeveeeereeeieeeceseereeseeeeesnens
Section 8.2 -- Sample REACE RUIN ..covvveverieeeriieerirenseseerseeeeeeneeseseesssssessssesesns




Chapter 9. Conclusions and Future Work ..., M

Section 9.1 -- Reasoning under UNcertainty  ......ccccevcevecreeeeceeensneccseeeerennes 95
Section 9.2 -- Deliberation in Real Time .....cccccvcvvciienniicnncniicnncecrnneeee 9
Section 9.3 -- Decay in Values of ACHONS ....ccccecevvererrenserserssenseesecneennesennns 98
Section 9.4 -- A Theory of Value of ACON .....ccceveeeverccerenceneneercnrenenrenans PN

Section 9.5 -- Other Structuring HeuristiCS ...ccccceevvcrrecrncerecciienecnneensennenes 100

Appendix A. ReAct Programming Manual ... 101

Section A.O--Introduction and OVEIVIEW ......cccvrnceinvericsncennseceneessniessenees 101

SeCtion A.L1--BaSICS ...ccceicerreiririeiieiniteeeincsiaetsesssnesessasesssasanesssensesssssssssssessens 102

A.1.1 Loading BB ...ccocciicoeiiirtiinecircennenenreroressesesssnessssssanssssessssesenns 102

A.1.2 Loading the SYSteM ....ccccecveeeercnrinrerinssisseecseeisneeessseeresssssenssesens 103

A.1.3 Files Loaded as part of REACL .....ccceeeverververcecrenreecnnnnecesesennnene 104

A.1.4 Domain Information Required by REACt ....cccovevrreevreerercnenne 105

Section A.2--Running the ReAct hierarchy structuring  ....ccceeeveveennen.

AIGOTIRIM ..veeeteerecccereee e s eresrerse s e esessesstesaessnenssesesasssenssens 108

A.2.1 Loading the React hierarchy structuring algorithm  ........ 108

A.2.2 Running the ReAct structuring algorithm  .....cccecevervrveenenne. 108

A.2.3 Restructuring an existing hierarchy  .....cccceececrcevcesereerernenes 112

A.2.4 Building a BB1 hierarchy from a Lisp hierarchy  .............. 113

A.2.5 LOGICAl OPEIAtIONS .....eceveeecveeerrreeireesrveeseersesnressessesssasessessnersssens 113

Section A.3--Using and running REACE  ...ceeecveeeeeeerereeeereeeceeeeresseseessenseens 115

A.3.1 ReAct Knowledge Base .........cceeecceeeeerienieeereniseeessnesnseseesseessneas 115

A.3.2 FPR KNOwledge BasSe .......cccccvveeeeeceveeeecnreneecsenesrnneesssssseessssessenes 117

A.3.3 PaTQmETOrS ....ccivviieceiieieerecereerteenseeessessseesseesesasasssesssessessaesssenns 118

A.3.4 RUNNING REACT ...ooiiieieiniiriceeteereeenneenseencsecesseessetessaessssassensens 120

A.3.5 REACT ONLOLOZY .cceeeerererrrererereeeeerrnrrsereeecsssssesessssssssesssssssanessansns 122

Appendix B. Medical Knowledge Base ..., 124




List of Figures

Chapter 2
Figure 1 -- Reactive plan performance on a single fault  ......cccccvveennenee. 19
Chapter 3
Figure 1 -- Sample action-based hierarchy  ...cceveeevevccnreerneeccceeecneens 28
Figure 2 -- Deadline distribution affects hierarchy structuring  .......... 4
Figure 3 -- Potential vs. actual values of aCtion  ......cceceevevereeerevemseeecnennne 36
Chapter 5 '
Figure 1 -- Under strict assumptions actual performance may be  .......
approximated by a stepwise linear function .......ccccevevruevuenns 56
Chapter 6
Figure 1 -- Hierarchy performance based on problem size .................... 63
Figure 2 -- Hierarchy improvement vs. random structuring  ............. o4
Figure 3 -- Hierarchy performance with different deadlines and  .......
DREUTISTICS ueiviiieeeieeiicreeirecreseesieesnernessessesessersesssesesssessessesssnens 65
Figure 4 -- Hierarchy performance using all-or-nothing  .....ccecevee.
EVAIUATION ..ueiiiiiiiiticticicteetecntestesaesnessessessasreesarrsssssassssesssessanes 67
Figure 5 -- Hierarchy performance with non-trivial deadline  .............
AISIIIDULIONS «..eeeiiiiecciritereeeteereereereeeee st esseesseeseenesssaesssessssenns 68
Figure 6 -- Hierarchy performance with test promotion  .....ceceeevvveevunn. 70
Chapter 7
Figure 1 -- Distribution of action-fault values: random vs.  ................
AOMIAIN .eeiiriiiiiiieerrereeererresetrereseeeesersesseesnenssesessessssssesassssaseees 76
Figure 2 -- Portion of medical action-based hierarchy  ......cccecvvrevereunnns 79
Figure 3 -- Hierarchy performance on medical problem (n0  ...ccoeueuene.
COSES fACtOred IN) ..cccveveerierieerierenere et &0
Figure 4 -- Hierarchy performance on medical problem (costs  ............
£ACTOTRA IN) weiiereeieeeeeeceeeeeec et e s e e e e e e en e s sneseeens 81
Figure 5 -- Hierarchy performance (64 faults) Parameter values  ........
similar to medical dOMAIN ..ccueeveeevreeriiieieececee e 83
Figure 6 -- Hierarchy performance (32 faults) Parameter values  ........
similar to medical dOMAIN ...cccveeeerveiireeereeeiieeciee e 84
Chapter 8
Figure 1 -- ReAct Knowledge SOUTICES  ...cccceveeeereecevennerieneesrenessesesssssnnesens 83
Figure 2 -- Sample REACT rUn ....ceeereeereceeecvecneene seesesssersresssenesssnanasasssanrins 92
Appendix A :
Figure 1 -- ReAct and necessary supporting COmponents  ........e..ceeeeee. 103
Figure 2 -- REACE ONTOIOZY  ...coveeienrerrirrititecneireteeereenesessesseenesssesesmssnsesssssnns 123
Appendix B
Figure 1 -- Top level NOdes .........ouoiiicieceiieeeeeeereceeeeseceeeee e eess s e seenees 126
Figure 2 -- ANemicC DYPOXIia ...cocceevieeieirieeinerenninerieecseereseessnesaesseesnessnsesnns 127
Figure 3 -- HypoxemicC hyPOXia .....ccccoceeeceeecerenrerecere i eeesesecsseseseeeneeseneenes 128



Figure 4 -- Oligemic hypoxia

Figure 5 -- Internal milieu ..

Figure 6 -- Acid-base balance

-------------------------------------------------------------------------

--------------------------------------------------------------------------

-----------------------------------------------------------------------




Chapter 1
Introduction

In time-stressed domains, relying on decision trees developed using classical
methods to solve a diagnosis or classification problem can be dangerous.

Consider the problem of a parachutist trying to diagnose a potential
malfunction of the main parachute after noticing it seems to be taking longer
than usual to open. The parachutist has a pair of diagnostic tests available
which he/she can perform. One test is to look at the altimeter for a few
seconds to determine the rate of fall, and thereby determine whether he/she
has a low-speed or high-speed malfunction. The other test is to look at the
main parachute (or lack thereof) and determine whether there is a good
parachute, a parachute not properly open (low or high speed malfunction), or
no parachute at all (total malfunction). With these two tests, the parachutist
can classify the situation into one of four possible situations--a good
parachute, a low-speed malfunction, a high-speed malfunction, or a total
malfunction. If the parachutist fails to make a sufficiently specific diagnosis,
then the parachutist will not be able to respond effectively in time, and a
catastrophic outcome will result. Imagine that the prior probabilities of these
four possible situations are as follows:

Situation Prior
Good parachute 0.1
(due to the fact that the
parachute is slow in

opening, this value is

low)

Low-speed malfunction 04
High-speed malfunction 04
Total malfunction 0.1

This being a time stressed domain, there may only be sufficient time to
perform one of the two available tests before the parachutist is required to act.
Hence the first test performed ought to help the parachutist identify such an
action.




From an information-theoretic point of view, the best test to perform
first would be to look at the altimeter, because this will distinguish between
the most likely possibilities--low-speed vs. high-speed malfunctions. The
difficulty with this is that it fails to identify an action to perform in either of
these potentially urgent situations. If the rate of fall is slow, the parachutist
knows there is either a good parachute or a low-speed malfunction; likewise if
the rate of fall is fast, there is either a high-speed or total malfunction. But as
it turns out, in this domain this does not give sufficient information to act
effectively: a low-speed malfunction requires a quite different action from a
good parachute, and similarly a high-speed malfunction requires a quite
different action from a total malfunction. Looking at the parachute is a far
better choice. Upon doing so, the parachutist still will not know whether
there is a high-speed or low-speed malfunction, but he/she will have enough
information on which to act: if there is either a low- or high-speed
malfunction, he/she must release the main parachute and activate the
reserve; if there is a total he/she must pull the reserve immediately (saving
time); and if there is no malfunction he/she must steer normally.

This simple example illustrates many of the properties of the problem
that this thesis is intended to solve, such as:

There is a time-stressed domain in which some form of response is required by
a deadline. Within the domain, the goal is to diagnose one of a number of
faults. Complete diagnosis of a fault would enable a complete solution of the
problem, but a partial diagnosis may be much better than no information at
all. However, a partial or complete diagnosis made after the deadline is
reached is of no help at all. Partial diagnoses consist of information that the
fault belongs to one of a particular set but not which specific fault is the
correct one.

There are tests available that the agent (in this case the parachutist) can
perform to distinguish among the faults that need to be diagnosed. Each test
will have two or more outcomes, and each outcome in turn will correspond to
some subset of the total set of faults (the subset of faults consistent with that
outcome). For example, in the parachutist domain, the "check alternative" test
has two outcomes: low rate of fall, and high rate of fall. The low rate of fall
outcome is consistent with two faults: "good parachute" and "low-speed




malfunction”". The high rate of fall outcome is consistent with the other two

faults.

There are actions available that can be performed; each action has some value
for each fault. For example, in this domain pulling the reserve immediately
with a low-speed malfunction can result in a fatal entanglement, so the value
of this action is very low for this fault. It is also the case that actions may have
value for a class of faults larger than a single fault. An action may have value
for a fault without being the optimal action for that fault--for example, an
action resulting in injury but not death might fit into this category in this

domain.

The deadline may vary depending on the fault--in this domain, low-speed and
high-speed malfunctions have very different deadline distributions. However,
the agent will always know when it is about to reach a deadline and must take
action. The agent’s decision on what type of test to perform may depend on
knowledge that it has about deadline distributions--for example, any test that
takes longer than the expected amount of time until impact is useless in this

domain.

More than one outcome of a test may be consistent with any given fault. It is
possible that a test will not provide any information about certain faults, or
that it will provide partial information (changing the probability) without
providing complete information. For example, in this domain, another test
which could be performed would be to check body position (whether upright
or horizontal). The high-speed malfunction fault is consistent with both
outcomes of this test. This thesis will consider tests that provide no
information about certain faults, but not tests giving partial (probabilistic)
information about faults. It is also possible (in some domains, not this one)
that the agent may be able to initiate several tests simultaneously, and will
choose to do so if the value of doing so is greater than the cost of performing
extraneous tests; this thesis will treat this question.

Although the agent will have very little time to respond once the emergency
occurs, the agent will have considerable time to plan out possible responses in
advance of the emergency occurring. However, the goal here is not to provide




the agent with a universal plan. Rather, it is to provide the agent with a
manageable set of faults that it can reasonably plan to respond to.
Furthermore, the agent does not execute a complex plan--it is concerned only
with finding a single action that it can apply in a situation. It finds the best
action possible given its constraints, and then acts.

This thesis will propose and evaluate a solution to this problem based on the
concept of action-based hierarchies: an action-based hierarchy is a form of
decision tree of sets of faults with actions augmented to each node. The agent
- finds the most specific possible diagnosis--that is, the lowest possible node in
the hierarchy--within the time available, and then performs the action
augmented to that node.

In chapter 2, the problem will be described more formally. Chapter 2
will distinguish the two different phases--the reactive planning and the
reactive plan execution stages of the solution. The primary goal of the thesis
is to find a way of constructing reactive plans--sequences of tests and actions
to be performed under certain conditions--so that they find as good an action
as possible in as short a time as possible--in other words the execution phase is
the dominant concern here. However, it is also necessary that the reactive
planning phase--the construction of the reactive plans in advance of
execution time--not involve so high a time complexity that it is infeasible. In
fact, the problem will be formulated in such a way that there is by definition a
best possible reactive plan in any given situation. Although it is assumed that
the agent has a considerable amount of time to do reactive planning, this time
is not infinite--if it were, it could simply search the space of all possible
reactive plans until it found the best one. A reactive planning approach
involving time complexity better than NP-complete is necessary here.

Chapter 3 will present the approach. The basic idea is to take the
existing Al technology of decision trees and augment it with the notion of an
action at each node in the tree to form a new structure called the action-based
hierarchy. The action at each node is the best possible action for the set of
faults that are descendants of that node in the hierarchy. Ideally, it is an
action with good value for all those faults; less ideally it may ignore one or two
low probability faults in exchange for good value for all the other faults.
Because the action is designed to provide good value for a large class of faults,
it is not necessarily the best action for every one of those faults. Given the




structure of decision trees, the question arises of what heuristic should be used
to decide how to expand each node (the attribute selection problem). Chapter 3
will argue that an action-based heuristic is much more natural than the
standard information-theoretic heuristics which are more traditionally used to
structure decision trees.

Chapter 3 will also describe various enhancements of the approach that
are necessary to solve all the aspects of the problem described in chapter 2.
For example, the outcomes of a test correspond to sets of faults. When these
sets of faults are not disjoint (one fault may be consistent with more than one
outcome to a test) it introduces additional complexities into the solution that is
used. When the costs of tests are taken into account, it becomes possible to
modify the approach to be able to intelligently recommend--or not
recommend--the performance of multiple tests at one time, a desirable feature
in some domains. Various tradeoffs must also be considered when more than
one fault may appear at one time.

In chapter 4, complexity considerations will be discussed. The approach
is designed so that time and space complexity of the generated reactive plan is
trivial, so the main concern is complexity at the reactive planning stage. With
sufficient assumptions, complexity can be analyzed completely. When the
problem becomes more sophisticated, it becomes difficult for reasons that will
be discussed in that chapter for the problem to be completely analyzed, but
examples taken from a real-world domain are given which shed light on the
complexity of the reactive planning approach in general. Chapter 4 begins
the part of the thesis that evaluates the approach; it is unique in that it is the
only chapter to address the reactive planning part of the approach (as opposed
to the value of the generated reactive plans).

The next several chapters are devoted to an evaluation of the merits of
the approach in generating reactive plans that meet the goals outlined in
chapter 2. It should be noted here that casting any real-world problem into
the terms described in chapter 2 will necessarily be an approximation to the
real-world problem. Thus, if it is claimed that a particular solution to the
approximation is "optimal", it is not necessarily the case that it is an optimal
solution to the real problem, but only an optimal solution to the approximation.
Although the thesis seeks to evaluate how well the approach solves the
idealized problems derived from real-world examples, it does not quantify how
close these idealized problems approximate the real world. However, it is not




intended that this approach will be an agent's only tool in solving any
problem: rather the purpose of making the approximations is to enable the
agent to make a quick response in cases where it is required to do so. In cases
where the agent has more time, it is possible that a completely different
solution, involving a more complete (but more computationally costly)
approximation to the real world would be appropriate. Even in such cases,
optimality is constrained by the limits on available knowledge and the
availability of effective actions.

The first of this group of chapters is chapter 5, in which the evaluation
is theoretical: what can be said in absolute terms about how well the approach
solves the (idealized) problem it is designed to solve? There are two basic
results in chapter 5. The first will show that under certain very strict
assumptions, the approach provides the best solution to the problem. The
assumptions are too strict to be valid in all but a few domains; hence the more
empirical results of chapters 6 and 7 that will follow. The second result of
chapter 5 shows that a particular part of the approach, known as test
promotion, that is actually an add-on to the basic approach, is guaranteed to
improve or at least not worsen the value of the solution. Hence if the
computational expense at planning time is not prohibitive, running this phase
of the algorithm will be desirable.

The results of chapter 5 are quite incomplete, which is what motivates
the work of chapters 6 and 7. The idea of chapter 6 is that the inputs to the
algorithm that forms the basis for the approach can be assigned randomly,
and the algorithm then run. Any reactive plan can be evaluated even without
actually deploying it in an actual agent. Since the approach is a variant on
the traditional decision tree approach, the value of a reactive plan generated
using it can be compared to that of a reactive plan generated using the
traditional decision tree approach. By comparing the results, it can be
determined whether the approach represents an improvement over existing
technology or not. Chapter 6 will perform these experiments for the basic
approach and the various enhancements described in chapter 3.

In chapter 7 a real-world domain is introduced: intensive care unit
patient monitoring. Domain knowledge has been gathered from this domain
and used as the input to the algorithm; the results are presented in chapter 7.
Because this is a single problem, however, the results are not statistically
significant. Chapter 7 also presents an analysis of the domain which




determines the properties of the inputs to the algorithm. Then a new set of
experiments is performed which assigns the inputs in a way that approximates
that of the medical domain but that also allows for statistical significance.

So far no mention has been made of an actual implementation of an
agent that can use reactive plans generated using this approach. That is the
goal of chapter 8. Because the analysis in chapters 4-7 is self-contained, there
is no need in chapter 8 to analyze the performance of the agent. However, a
number of interesting issues come up in the actual implementation of the
agent which are discussed in chapter 8. In addition, this provides a good
framework to provide an actual example of the approach in action. Although
chapter 7 provided an overall evaluation of the approach for the medical
domain, it did not provide specific examples of how the approach would apply
to specific faults. Chapter 8 provides such an example.

Finally, the research is summarized and potential future work is
described in chapter 9, the conclusion.

Two appendices are provided: appendix A gives a programming manual
for the implementation described in chapter 8. Appendix B gives detailed
information about the medical knowledge base that served as the basis for the
experiments in Chapter 7; the medical knowledge was provided by our medical
colleagues, and its primary author is Garry Gold.

Section 1.1 -- Related Work

Several bodies of literature connect to this thesis work.

The thesis represents an advance on existing work in anytime
planning; this approach trades off inexpensive computation time before the
agent is time-stressed for expensive time during a stressful situation. Existing
diagnosis literature either does not address diagnosis under deadlines or does
so only tangentially by concerning itself with the complexity of diagnosis
algorithms. A variety of reactive planning approaches has been taken in the
literature, none of which adequately addresses the problem. A similar
comment can be made about real-time planning systems. A detailed
description of these approaches, with appropriate references and reasons why
they do not or only partially solve the problem at hand, can be found in
section 2.2.




There has been a significant body of literature devoted to the problem
of how one structures a decision tree (the so-called attribute selection
problem). In one sense this literature is not entirely relevant to the current
thesis because it is designed to solve a different problem than the one
described here. However, an overview of this body of work, which relates
more to the approach than to the problem, is given in section 3.6.

Finally, with regard to the domain itself, there has been a wide range of
work on artificial intelligence in medicine. Within that work, there are two
bodies of literature of interest here: those systems that sought to handle real-
time situations in a reasonable manner, and those monitoring systems with the
intensive care unit as the application domain. A description of these systems,
and how the current approach differs from them, can be found in section 7.1.




Chapter 2
The Problem.

At the most basic level, we are interested in the problem of identifying
and acting on one of a set of faults. For the purposes of this thesis, we define a
fault as the most specific diagnosis in which an agent is interested within a
given domain. Thus, a fault is a property both of the domain and the goals of
an agent. For example, a police officer considering handing out a ticket for
drunk driving is interested in whether the blood alcohol level exceeds or is
under .08%; a physician treating someone for alcohol poisoning has different
concerns. From the police officer's point of view, there are two possible faults:
BAC under .08%, and BAC over .08%. From the physician's point of view, there
may be many different faults and the particular BAC may not be particularly
relevant. In other words, there is no objective definition of what a fault is; in
this we differ with other writers in the literature who for example view a fault
as the failure of one particular component of a mechanical system ([RE87],
[DE87]). The use of the term fault does imply that a fault in general is
something negative which needs to be corrected. This does not preclude
including a few "faults" that correspond to normal behavior for completeness,
but as a rule we think of faults as undesirable events requiring actions.

For dealing with a set of faults, the agent will have available to it a
reactive plan. Later in this thesis we will analyze in detail a particular type of
reactive plan--the action-based hierarchy--but for now it is most important to
realize that a reactive plan consists of a series of actions that an agent may
take in order to diagnose a particular fault in real time, together with actions
for remedying the fault that it diagnoses. Because the reactive plan is
intended to be deployed in real time, it is desirable that it consume a minimum
of computational, time and other resources, and that it have an anytime flavor
[DB88] to it which will allow it to identify useful actions to perform even in
cases where resources do not permit its running to completion.

For the purposes of this thesis, the reactive planner that constructs the
reactive plan may be quite distinct from the agent that executes a reactive
plan. Cohsider, for example, a pilot faced with making an emergency landing
because of engine failure. The pilot has a checklist--a reactive plan--for
dealing with this emergency situation. However, it is generally not the case




that the pilot designed the checklist. Although the pilot is the agent who will
execute the plan, the checklist is likely to be recommended for all pilots flying
a particular type of aircraft. This distinction is important because it indicates
differences in the desired properties of the reactive plan versus the reactive
planner. The reactive planner need not be especially computationally
efficient, because it may have substantial time to complete a plan prior to it
ever being needed in real time. However, the plan that it generates must be
computationally efficient for the reasons noted above. This distinction will
guide the design of reactive plans in this thesis.

Partial diagnoses are quite possible in many domains, and it is essential
that the reactive plan be able to handle the possibility of making a partial
diagnosis. For example, a physician may recommend a transfusion if he/she
knows a patient's blood type and that the patient has an anemic condition--
even without knowing the specific type of anemic condition the patient is
suffering from. Such a recommendation is not necessarily optimal--knowing
the particular type of anemia would enable an optimal recommendation--but
may be necessary to save the life of the patient. The reactive plan must enable
an agent to reach similar goals--finding an optimal action if time permits, but
taking an action that is less than optimal if necessary because of a deadline.

We take the view that a partial diagnosis is a set of faults and a complete
diagnosis is a single fault. Hence as the reactive plan is executed, the diagnosis
will gradually be refined from the set of all faults in the domain to the
particular fault that is present in a given situation.

The agent must be able to respond by a deadline. We recognize two
particular types of deadlines--hard and soft deadlines. A hard deadline is that
time by which an agent must have taken action or a catastrophic outcome will
result. A soft deadline, which is always either at the same time or earlier than
the hard deadline, is that time after which it is better to act than to delay
- acting while further refining the diagnosis. Notice that although the agent
will therefore act upon reaching a soft deadline, it will still continue to
perform diagnosis until it reduces the diagnosis down to a single fault: the soft
deadline is not the signal to stop diagnosis but rather to start action. We make
the assumption that the agent always knows when it has reached a soft
deadline; it is not the goal of the current research to identify what the agent's
soft deadline is.

10




An interesting property of hard deadlines is that they do not actually
affect the performance of the reactive plan. They do not cause the agent to
take additional action, because such action is already being performed by
virtue of the soft deadline being reached. However, hard deadlines may play a
major role in the design of the reactive plan, because in designing a reactive
plan, the planner will try to make sure that the best possible action is
available to the agent before reaching the hard deadline. Thus, there may be
information available to the reactive planner involving the probability
distributions for the hard deadlines. In particular, for each fault there will be
a deadline distribution which represents the probability of the hard deadline
falling in different intervals if the particular fault turns out to be present.
The idea here is that although the reactive planner cannot know the exact
value of the deadline, it should have some notion that certain faults are likely
to require quick responses whereas others allow the agent more time, and
therefore construct the reactive plan accordingly.

The hard deadline is measured from the time when the reactive plan is
first invoked--that is, a hard deadline of 30 minutes indicates that the agent
- had 30 minutes after invoking the reactive plan to take action. The agent will
generally invoke the reactive plan after noticing that something appears to
be going wrong--perhaps it had a regular plan which called for a parameter
value to be in a particular range, and the value is outside that range. It is
obvious that the invocation of the reactive plan does not necessarily
correspond to the time when the fault first appeared, so the reader may ask
why we do not measure hard deadlines from the time when the fault appeared.
The answer is that the reactive planner cannot make use of such knowledge.
If it knows approximately how long the agent will have after invoking the
reactive plan to take action, it can construct the plan accordingly. But if the
planner only knows how long the agent will have since the fault first
appeared, it cannot be sure when the plan will be invoked and therefore will
be operating in the dark. Thus, in providing deadline distribution information
to the reactive planner, one must be careful to measure deadlines from the
time the reactive plan will be invoked--which might be when the first
indication of the fault appeared, not when the fault itself appeared.

Just as hard deadlines do not actually affect the behavior of the agent in
executing the reactive plan, we do not use soft deadlines in constructing the
reactive plan. The reason is that we are most interested in the agent having a

11




good action to perform by the hard deadline. Although it is even better if this
action is available by the soft deadline, the planner does not sacrifice possible
performance at the hard deadline by striving to perform as much diagnosis as
possible before the soft deadline. Hence we have an interesting dichotomy in
how deadlines are used: soft deadlines exclusively in executing the reactive
plan, and hard deadlines exclusively in designing the plans. The agent
executing the reactive plan does not need to know the hard deadline, because
the soft deadline is the time by which action is desirable. Similarly,
performance is evaluated based on the action available at the hard deadline, so
the reactive planner does not need to know anything about soft deadlines.

We have stated that we view a fault as something that needs to be
corrected. Because of this, the agent also has a set of corrective actions which
it can take in executing the reactive plan. Because the agent is executing a
reactive plan, it is not interested in designing a long sequence of corrective
actions: rather it views the execution of a single corrective action as being a
solution to a fault. However, the reactive planner recognizes that some
solutions are potentially better than others, and so it has a notion of the value
of performing a corrective action. This is a purely heuristic estimate given
either directly by the domain expert or by some well-understood computation
within the domain. For the moment, it is assumed to be positive--negative
"values" (actually costs of actions) will be discussed below. For each
combination of a corrective action and a fault, there is a value representing
the value of that action for that fault. The resulting matrix is expected to be
rather sparse in that most corrective actions have no value for most faults.
For example, filling the tires with air will not fix a broken-down engine, but
the reactive planner needs to know this either explicitly or implicitly.

Because of the sparseness of the value matrix, it is not expected that a
domain expert would need to fill in the entire matrix. Rather, the domain
expert would fill in values only for those actions that have an interesting
effect on particular faults, and the rest of the matrix would be automatically
filled in with zeroes. Indeed, in a large domain, the entire matrix would not
need to be represented explicitly even internally within the reactive planner.

There are also costs associated with pairs of actions and faults. Again,
the cost is a heuristic estimate of the cost of performing a particular action in
the presence of a particular fault. Here we expect that in most cases the cost of
performing an action will be independent of the particular fault it is being

12




applied to. This captures the notion that if the action has no value for the
particular fault, then the cost of performing it makes it undesirable to
perform the action. Because the cost of performing an action is in general
independent of the fault involved, again the cost matrix can be provided by
the expert by simply providing costs for the actions and then noting
exceptions for particular faults.

In practice, we combine the notion of value and cost into a single notion
of total value, which represents the difference between the value and the cost.
This total value can therefore be negative, and for the remainder of this thesis
when the term "value" is used, it is this difference that is being referred to.
This will simplify the analysis. The difference between value and cost appears
to be the appropriate combining function. If we took the ratio, actions with
little value but infinitesimal cost would be more desirable than actions with
high value but moderate cost--this is clearly not a desirable situation.

In order to help the agent diagnose one of the faults, it has available to
it a set of tests which it can perform. Each test has a set of possible outcomes,
and each outcome is a set of faults (a subset of the full set). Thus, when a test is
performed and an outcome is obtained, the agent knows that the actual fault
belongs to the set corresponding to that outcome. If the agent already has
information from another test or group of tests that the actual fault falls
within some differential diagnosis, then the agent can take the intersection of
the differential diagnosis with the current outcome to produce a new, smaller
differential diagnosis. Gradually by narrowing down the differential the
agent hopes to reduce it to a single fault and complete the diagnosis process.
The fault sets associated with the outcomes for a given test need not be disjoint-
-some tests may not provide any information one way or the other about
certain faults. In this thesis, the assumption is made that if a given fault is
present and this fault is included in more than one outcome of a particular
test, all such outcomes are equally likely when the test is performed.

A test also has associated with it a set of monitoring actions and
diagnostic actions. A monitoring or diagnostic action is an attempt by the
agent to gain information from the world. Specifically, a monitoring action
represents an increase in the rate at which a given parameter, which is
always available to the agent at some frequency anyway, is monitored. A
diagnostic action is a request to obtain a single value of a particular parameter
from the world. Both types of actions have two types of costs associated with

13



them. There are temporal costs--the amount of time that it takes for the action
to be performed and the results to come back. Because of the real-time nature
of the deadlines the agent is up against, temporal costs are important to the
agent. Temporal costs in turn have two components--the time taken in the
world for the parameter values to be obtained, and the computational
resources consumed by the agent in analyzing the parameter values to
determine a particular outcome for a test. The exact value of the temporal costs
will therefore vary depending upon the amount of computational resources
the agent has to devote to the diagnosis task. There are also physical costs--the
amount of physical resources consumed by the action. In general, these two
types of costs must be traded off against one another--we could perform all
possible actions with great frequency and save on temporal costs, but at great
expense regarding physical costs. Similarly, we could save on physical costs
by performing only one monitoring or diagnostic action at a time (thereby
performing only those actions that are absolutely necessary) but this would
increase the temporal costs.

Faults have associated with them a set of prior probabilities. Because we
assume that when the reactive plan is invoked, at least one fault is present, the
prior probabilities must sum to at least 1.0. In the event that we make the
single fault assumption (see below), the sum of the priors must be exactly 1.0.

It follows from the above description of the basics of the problem that
the reactive plan will be executing a form of anytime algorithm. At various
points in time, it will request that tests be performed, and the results of these
tests will result in a refinement of the differential diagnosis. However, for
any differential diagnosis, it is possible to find a corrective action that is
better than all others, on average, for this differential. Ideally, such an action
would be one that had substantial value for most of the faults in the
differential, and as a result it is desirable that the reactive plan be constructed
in such a way that it is likely to find differentials along the way that have good
corrective actions for most of their faults. The algorithm is anytime in the
sense that as the differential is refined, the value of the best corrective action
available is likely to improve as it can be made more specialized for particular
faults. When the soft deadline is reached, the corrective action associated with
the current differential can be recommended and performed.

The problem can be constructed either making, or not making, the
single fault assumption. The above description tends to make the single fault

14




assumption. A number of things change somewhat when the single fault
assumption is not made. Most importantly, whereas tests previously were
assumed to return orily a single outcome when performed, now tests may have
multiple outcomes per performance. Whereas the previous semantics of a test
outcome was that the one and only fault was in the outcome fault set, now the
semantics of a set of test outcomes is that at least one fault from each outcome
set is present. Another difference is that it becomes necessary to represent
values of actions for a set of faults. For example, if either engine on a twin-
engine plane fails individually, flying to a nearby airport may be the most
desirable action. But if both engines fail, then making an emergency landing
in an empty field will be the most desirable. The matrix representation
described earlier will not be sufficient to capture this domain knowledge.

Section 2.1 -- Formal Statement of the Problem

The previous section gave an intuitive statement of the problem we are

interested in. In this section we will state the problem more precisely. The

reactive planner is given a 9-tuple with which to construct a plan:
<EPDAV,T,0GS

These are defined as follows:

F--  the set of faults.

P -- the set of prior probabilities. P is a function mapping F to the interval
[0,1].

D - the set of deadline distributions. D is a function mapping F to the set of

functions, Df, such that ,

_[5° DAt)dt =1
Here the semantics are that if D(f) = Df, then the probability that the
hard deadline for fault flies in the interval [t1,t2] is:

t
J't f DAe) dt

A - the set of actions.

V --  the matrix of values. Vis a function mapping FxA to the interval [-1,1].
The semantics of this will be discussed in more detail below.

T--  the set of tests.

15




O-- the set of outcomes to tests. O is a function mapping T to sets of sets. For
example, if O(t) = { o1, 02, ..., Ok } is a set of outcomes, then each ¢; is a
subset of F corresponding to one possible outcome of the test t.

C-- the set of temporal costs to tests. This is a function mapping T to the set
of nonnegative real numbers.

S -~ the set of physical costs to tests. This is a function mapping T to the set

of nonnegative real numbers.

It will be noted that a couple of simplifications have been made from the
intuitive description of the problem given in the last section. First, the notion
of action-value and action-cost have beenAcollapsed into a single notion of
action-value (V). The rationale is that we can assign an action-value in the
interval [0,1], and then an action cost in the interval [0,1], and finally take the
difference to give a combined action-value in the interval [-1,1]. Also, the
notions of monitoring and diagnostic actions have been removed. As noted in
the last section, a test consists of a set of monitoring and diagnostic actions.
However, the interesting properties of a these monitoring and diagnostic
actions can be capture in the temporal costs of tests and physical costs of tests
using the combining functions described in the last section. It will not be a
topic of research in this thesis to describe how to construct tests out of the
more atomic monitoring and diagnostic actions, so for the purposes of the
analysis we can leave it at that.

We now describe the goal of the agent vis-a-vis the reactive plan. The
agent's goal, roughly speaking, is to recommend a series of tests

<ty Tp>, <ty, 11>, <, >, ...

where {p < t; < tp < .. are the times at which tests Tq, T1, T2, ... are

recommended. All times are measured from the invocation of the reactive
plan. When making its recommendation at time tg, the agent will have

available to it the outcomes of all tests that have come back already-- that is, all
outcomes to tests Tj, i< k, where §+ ((T}) < ty. The agent must also recommend
(and perform) at the soft deadline some action ag, and at the hard deadline

some action ap. The agent is assumed to know when the soft deadline is and to

recommend and perform an action at that point, but it continues to perform
diagnosis after reaching the soft deadline unless and until it reaches a

complete diagnosis. As mentioned in the previous section, the agent's
performance is evaluated on the basis of the value of the action ap, not on the

16




basis of the action a5. Also, we assume that the agent will know when it has

reached the soft deadline and be able to take action appropriately.

The notions of hard and soft deadlines represent an approximation to
the real situation, which is that the value of performing actions decays over
time. A complete analysis would take this decay as well as the cost of
performing actions into account and thereby determine the optimal time to
perform an action. The reason this complete analysis is rejected is that it
would require that one perform this computation in real time. Such run time
computation is intended to be avoided by this approach; hence the situation is
approximated with hard and soft deadlines. Hard deadlines at planning time
assume value of action decaying to zero at a single point in time (the hard
deadline). Soft deadlines at run time allow some incorporation of a more fluid
notion of value of action, albeit through the agent knowing the soft deadline
by some means outside of this approach. Should the agent have no such means
available to it, it could always simply use the hard deadline in place of the soft
deadline.

Because the analysis of the constructed plans is based on hard deadlines,
for the remainder of this thesis whenever the term "deadline" is encountered
without qualification, it will be referring to the hard deadline. Thus, for the
purposes of evaluation of the approach soft deadline is assumed to be equal to
hard deadline. Therefore, no specific claims are being made about the
usefulness of the soft deadline concept beyond the fact that clearly it is
sometimes desirable to perform action in advance of its being absolutely
necessary. Hence if the agent knows (by some means outside the scope of this
approach) in a particular case that this is desirable, it should take advantage of

this knowledge.
The action ap is a function of the time t at which the hard deadline

occurs and therefore may be written as ap(t). The function should depend on

two things--the particular fault that occurs and the outcomes to the various
tests (noting that in the case of multiple outcomes including the same fault, all
are equally likely). Letting f denote the fault and o denote the various possible
outcomes to the tests, we can see the value function is actually a function of
three variables: ap(t, f, 0). This may be rendered in numerical terms as a step

function by defining:
V(t,f,o)=V(ap(t f o)1)

17




This function intuitively represents the improving value of the action
obtained to date during a single invocation of the reactive plan. By taking the
mean over all outcomes of the test consistent with this fault, we can reduce
this to a function of two variables: V ( t, f) which should also be a step
function, albeit with many more steps. Now we can reduce this to a function
only of the fault itself by weighting this value function by the deadline
distribution function for this fault:
V(f) = j5° DAt)V(f)t

Finally we may compute the overall performance of the agent by calculating
the weighted sum over all faults:

V=3 Vif) P(f)
feF

This number, V, represents the overall performance of the agent on this
reactive plan. Two different reactive plans may therefore be compared by
computing different values for V and comparing. Intuitively, what we have
done is take the various actions recommended by the agent at different points
in time and determine the values of those actions for a particular fault. These
values are then plotted on a graph and then the average is taken of the
different performances that are possible for a single fault because of
uncertainty in test outcome. We then determine the average performance
over time of the agent on this fault by computing the integral weighted by
deadline distribution. Finally, we compute the average performance of the
agent over all faults by taking the average of these functions weighted by
probabilities of the faults. This is illustrated graphically in Figure 1. This
shows the improving performance of the value of the action recommended for
a fault over time as the action changes from A0, Al, A2, through A3. Because
in this case the hard deadline is assumed to have a uniform distribution
between 2.5 and 3.5, only the values of the actions recommended at those time
points are relevant, and the integral computing overall performance is
calculated over that interval.

So far the analysis has taken into account only the value of performing
actions. What of the cost of performing tests as described in the last section?
The temporal cost of performing tests is taken into account when we compute
the time axis of these graphs. The physical cost of performing tests will itself
be a step function of time, in this case guaranteed to be non-decreasing, which
can be computed for a single invocation of the reactive plan as follows:

18




S(tf0) = Z Ct)
t <t

As with values, we can compute the average over all test outcomes consistent
with the particular fault to give S(t,f). Now we can compute the weighted

integral over time to give:

Action A3
1.00 —_—
0.75 Action A2
Value of Action Al
Best Action 0.50 Deadline is uniformly
To Date distributed between
Action A0 ~ 2.5 and 3.5. Overall
0.25 performance is 0.625
0.00 T I
0 1 2 3 4 5
Time
Figure 1:

Reactive Plan Performance on a Single Fault

S() = jg’ Det)S(tfat

Finally, we can compute the overall average physical cost of this reactive plan
by computing the weighted average over different faults:

S= Y S(PY)
feF

The true performance of a reactive plan may then be computed by
determining the value-cost difference V-S.

Our goal in this thesis is not to directly produce reactive plans. It is,
rather, to produce a reactive planner that will generate good reactive plans.
Thus, we will have a space of problems {<F, P, D, A, V, T, O, C, $>}. By computing
the average performance of the reactive plans produced by different reactive
planners for the same problem, we will be able to compare reactive planners.
It is our goal in this thesis to propose and evaluate a set of reactive planners

on just this criterion.

19




This completes the statement of the problem for the single fault case.

The multiple fault case is similar but a couple of changes are necessary to the

way the problem is defined:

P--  Prior probabilities remain defined as before. However it is no longer
necessarily the case that the sum of the priors is 1.0.

V -- The matrix of values now maps F x 2F x A to the interval [-1,1].
Semantically, this gives the value of a particular action (from A) for a
particular fault (from F) in the presence of a particular set of other
faults (from 2F). Wwe expect this matrix to be very sparse, including
entries only for interesting combinations of faults. The actual value
will be for a given fault-action pair the minimum of all values included
in the matrix that are maximal subsets of F.

O-- It is now possible for tests to have multiple outcomes occur for a given
invocation of the test. As before, we assume that all minimal sets of
outcomes that are consistent with a given set of faults will be equally
likely (and all other sets of outcomes do not occur).

The agent in executing the reactive plan may be working on more than one

partial diagnosis at a time, so it will now need to compute the best action on the

fly. We will show in Section 3 that if the size of the matrix of values is

reasonable, this computational complexity should not be unreasonable for a

small number of faults. The reactive plan is just not intended to deal with

large numbers of faults occurring simultaneously, so eventually performance
must degrade if the number of faults it is asked to deal with becomes too large.

We note that with the above definition of the problem, there are two
possible ways that the agent could diagnose multiple faults with its reactive
plan. It can have tests come back with multiple outcomes, which will lead to
multiple diagnoses of faults. Alternatively, it could be that all relevant tests
that might distinguish between a pair or group of faults have been performed,
with single outcomes, but there remains more than one fault in the
differential diagnosis. The agent does not have the opportunity to choose
which path it will follow to diagnosis of multiple faults, but we shall see that
there are advantages and disadvantages to each path.

Also, we note that although we now assume that the sum of the prior
probabilities may be greater than 1.0, we have not taken into account the
probabilities of combinations of faults occurring at once. We will examine

20




later in this thesis whether this assumption seriously harms us in terms of

performance of the agent.

Section 2.2 -- Related Work

The most obvious attempted solutions to this type of work to appear in the
literature are the anytime planning work of Dean and Boddy [DB88], the
decision theoretic analysis of Horvitz [HO87], and the concept of bounded
rationality elucidated by Russell and Wefald [RU91]. Anytime planning
involves the idea of an anytime algorithm which returns an answer
regardless of how long the algorithm runs for, but the value of the answer
improves over time. Their contribution is to analyze the properties of anytime
algorithms in general but not to propose a particular anytime algorithm; this
thesis will follow in this general framework but will present a particular
anytime algorithm whose properties can be analyzed. Horvitz and Russell and
Wefald do a good job of analyzing the problem from a theoretical point of view.
However, the goals of these researchers all differ somewhat from the present
research in that they assume that deliberation or metareasoning time is
nontrivial. In other words, they devote significant computational resources to
deciding what to do, rather than actually doing it. In the current research it is
an important goal, because of the urgent nature of the domains the agent is
expected to operate in, to keep metareasoning time to a trivial level. Any
computational resources used by the agent should be devoted exclusively to
analyzing the results of tests, not deciding what test to perform next. We are
willing to incur a potentially high computational expense at the reactive
planning stage in order to save a much smaller amount of time in executing
the reactive plan itself. The approaches mentioned above are unable to make
this tradeoff because they assume that a single agent does both deliberation
and acting, and so time spent deliberating is time lost acting.

Although we characterize this work as a diagnosis problem, the
connections between it and the existing diagnosis literature do not seem too
close. Classically diagnosis has been cast as a problem in first-order logic
[RE87]. This approach requires that one have a model of the domain in order to
do diagnosis. As such Reiter offers one significant advantage over our work--
the ability to do first principles diagnosis--and has one significant
disadvantage--meeting a real-time deadline is impossible. Reiter also shows

21




that diagnosis is greatly simplified when the single fault assumption is made--
a conclusion that we agree with although we do provide a mechanism for
extending our approach to the multiple fault case.

On the subject of multiple faults, the seminal paper is [DE87]. De Kleer
and Williams take the approach that diagnosing multiple faults is
computationally expensive and so they provide a number of techniques for
reducing the computational complexity of the search. For example, they
suggest beginning the search with small potential conflict sets and then
expanding the conflict sets to produce minimal sets that actually explain the
flawed behavior of the system. This works when doing diagnosis from first
principles but seems to be a hard idea to apply to our problem. Our agent starts
with a large differential diagnosis and then gradually works it down to smaller
sets of faults. However, we agree with their basic observation that if the
number of possible faults is small, then coping with their interactions
remains manageable, but that we cannot expect the problem of diagnosing all
possible subsets of the set of all faults to be computationally tractable.

Other researchers such as Cooper [CO90] have addressed the problem of
computational complexity of diagnosis without looking at meeting real-time
deadlines. For example, Cooper has shown that inference in belief networks is
NP-hard. The response to this is to attempt to control the search; the TOP N
algorithm [HE91] can be used to generate only the n most likely diagnoses. In
addition to the lack of meeting real-time deadlines, this approach differs from
ours in the use of a Bayesian belief net to represent uncertainties. The
current work is not an attempt to deal with uncertainty, although it might be a
worthwhile possible extension to attempt to do so.

Other approaches to diagnosis include model-based reasoning [DA88],
heuristic classification [CL85], qualitative reasoning [KU86], [FO84], decision
trees [QU83], and medical diagnosis [SH76]. None of these approaches attempt to
deal with the problem of diagnosis in real time, and so are of limited usefulness
to us as is, although an adaptation of Quinlan's decision trees will prove to be
central to our approach as we describe it in the next chapter.

Another large body of literature of interest to us is the work on reactive
and real-time planning. Before describing the relation of this work to the
present paper, we should define what we mean by these terms as different
authors may use them for different purposes. For us, reactive planning is the
task of planning in advance response to situations that may arise in real-time

22




for which there will not be adequate time to respond if we have to do
substantial planning at run time. The work in this thesis fits our definition of
reactive planning.

The ultimate example of reactive planning is universal planning [SC87]
where the reactive pl'armer attempts to enumerate in advance exactly what to
do in all situations the agent may encounter. Ginsburg [GI89] has shown that
in general universal planning is not computationally tractable, although it
may be in specific cases. We do not attempt to enumerate all possible situations
in advance. Rather, we enumerate a set of faults [DA94] to which we expect it
to be desirable to respond to (including, for example, those that are likely to be
critical, but not so critical that response is hopeless), and then plan to respond
only to that set of faults. We therefore are attacking a narrower problem than
Schoppers did, but with greater chance of success.

A much less extreme example is triangle tables [FI72] where the agent
has a plan to execute, but also has a series of preconditions to each step in the
plan, so that it knows when the situation has changed unexpectedly so that the
plan no longer applies and thereby the agent can replan. This work
represented one of the first efforts in reactive planning, but it is limited to
recognizing when a plan no longer applies as opposed to providing good
actions to perform in such a case.

Brooks' subsumption architecture [BR86] is part of this general body of
work, although he would probably not classify his work as reactive planning.
The approach involves dividing a robot's task into a number of layers, with the
lower layers providing simple abilities such as avoiding objects, and the
higher layers providing more complex abilities such as identifying objects.
This allows reactivity at the lower levels while still permitting more complex
operations at a high level. Perhaps Brooks' most controversial claim is that
there is no need for a central control structure in a robot. Although Brooks
has provided convincing evidence that his approach works for a simple robot
with two or three layers, it is not clear that it can scale up.

Kaelbling and Rosenschein have authored a number of papers on
situated automata theory ([KA87], [KA88], [KA90], and [RO89]). This theory is
based on the assumption that an agent can accurately track and represent the
state of the world in real time. The basic idea that they have is that they can
provide guaranteed response in a single (constant time) cycle. This seems to
imply that their approach would be useful if all deadlines were constant (or at

23




least multiples of a constant) but in the case of our problem, not only do the
deadlines vary in a much richer way, the costs of tests may not correspond
exactly to cycle time either, so fitting our problem into their approach seems
difficult. Their approach seems far more likely to be successful when agent
behavior can be mapped into levels of competence such that at each level
response is required within a constant cycle time. It simply is not obvious that
our problem can be divided up in this way.

Chrisman and Simmons [CH91] introduce the notion of sensible
planning which brings decision theory into the analysis of reactive planning.
A robot often needs to perform sensing actions in order to diagnose the state of
the world. Chrisman and Simmons use decision theory to determine which of
several possible sensing procedures involves the minimal expected cost. For
simple worlds, their approach is probably quite effective, but they have no
notion of meeting real-time objectives--they are simply interested in using
the best possible sensing procedure.

A number of approaches have been taken to real-time planning in the
literature. Of these, perhaps Dean et.al. [DE93] attack the problem closest to the
work in the present thesis. They compute a policy (a mapping from states to
actions) on the basis of which they can maximize the future discounted value,
averaged over time, of the world state. This problem is similar to ours in the
sense that states in their view correspond to differential diagnoses in ours, and
a policy corresponds to a decision of ours to perform a test in a certain
situation (their notion of action corresponds to our notion of test; our notion
of action can be used to compute their notion of the value of a state). However,
our problem differs from theirs in several important respects. Firstly, all
possible states in our world correspond to the set of all subsets of our fault set;
for a reasonable number of faults this would be intractable. Second, there
seems to be an unstated assumption that the time to progress from one state to
another is constant in their domains; in our domains it is not. Finally, they
seem to require the specific mathematical properties of the value discounting
function in order to make their algorithm tractable. This function
corresponds roughly to our notion of deadline distribution, which means that
their approach only works for one particular type of deadline distribution.

Hendler and Agrawala [HE90] describe a system in which they unify a
dynamic planning system with a real-time operating system (MARUTI).
Dynamic planning systems are able to both react and plan, and the amount of

24




time devoted to the two tasks itself varies dynamically based upon the nature of
the task. Dynamic planning is designed to address the main flaws in both
classical planning and reactive planning: it does not assume that a complete
plan can be laid out in advance with no unforeseen difficulties, and yet it also
does not require anticipation of all possible situations in advance, either.
Hendler criticizes existing planning systems on the grounds that they assume
that the planner has complete knowledge of the world. He therefore provides
a reaction component to handle those situations that the planner could not
foresee in advance. However, we go a step further by not assuming that even
the reaction component has complete knowledge of the world. But we do not
provide any dynamic replanning either, although we anticipate that an agent
using our reactive plans will also have other reasoning techniques in its

arsenal that will be capable of dynamic replanning.

25




Chapter 3
Action-Based Hierarchies

In this chapter we will describe the approach, which we call action-
based hierarchies, that we take to solving the problem outlined in the last
chapter. We will first describe the approach as it applies to a simplified
version of the problem, for illustrative purposes, and then extend the
approach to deal with the complete problem. We will also discuss the
feasibility of the approach along several dimensions. First, the time
complexity of the reactive plan must be very low. Second, the space
complexity of the reactive plan must at least be manageable. Finally, the time
complexity of the reactive planner, although not central to our goals, must be
low enough to permit the use of our approach (and possibly to allow some
dynamic replanning).

The simplified version of the problem that we will solve first makes the

following set of assumptions:

® Tests have no physical costs.

* No more than one test can be in progress at a time. If the agent performs a
test, it must wait for the outcome of that test before performing the next
test in its reactive plan. The first simplifying assumption tends to vastly
increase the number of tests that can be performed; this assumption limits
the number.

* Deadline distributions are not taken into account. As such we cannot make
absolute claims about the performance of a reactive plan unless it performs
better than its competitors for all possible values of the deadline. Otherwise
we can merely observe which deadline values one reactive plan is better
for, and which other deadline values another plan is better for.

® The reactive plan is invoked as soon as the fault appears (the previous
assumption requires this assumption to also be made).

* The fault sets associated with the outcomes of each test are disjoint (that is,
for any given fault, there is exactly one possible outcome of each test).

¢ The single fault assumption is also made.

26




The basic data structure that is used to represent a reactive plan is known as
an action-based hierarchy. An example of an action-based hierarchy is
shown in Figure 1. Action-based hierarchies have the following properties:

e The basic structure of an action-based hierarchy is similar to that of a
decision tree.

e The leaf nodes of the hierarchy correspond to individual faults (unlike in a
decision tree where they may correspond to classes of faults one wishes to
diagnose).

e Each higher-level node has associated with it a set of faults that is the
union of the sets of faults associated with its children.

e The top node has associated with it the set of all faults

e FEach node has associated with it a corrective action, which ideally will have
substantial benefit for all faults in the associated fault set, but if no such
action exists, may simply have substantial benefit for the most likely such

faults.

The central idea behind an action-based hierarchy is that by identifying
actions with sets of faults, if the agent only has time to make a partial
diagnosis, it will be able to perform the action associated with the set of faults
related to that partial diagnosis, and derive the benefit associated with that
action. The goal, ideally, is still to perform complete diagnosis, but it is also
necessary to be able to provide good response in a suboptimal situation where
complete diagnosis is not possible.

As shown in Figure 1, there is also associated with each non-terminal
node in the hierarchy a test from the set T (defined in the last chapter).
Suppose that node n has associated with it a test t, and O(t) (the set of outcomes
of thetest ) ={q, 0y, ..., Ok }, and that node n has an associated fault set F p.

Then n will have up to k children in the hierarchy, one corresponding to each
outcome oj for which o; n Fp; is non-empty. We can thereby formally define

an action-based hierarchy as follows:

e The hierarchy itself consists of a pair <R,N> where R is the root node of the
hierarchy and N is the set of all other nodes.

27




e Each node n in the hierarchy is a 4-tuple <L,t, a, F;> defined as follows:

e [ is the set of children nodes of this node. In the case of a terminal
node, this would be empty.

e tis the test associated with this node (or the empty set in case L happens
to be empty and we are dealing with a terminal node).

* 2 is the action associated with this node (how this is computed will be

explained below).
® Fpis the set of faults associated with this node.

Faults: F1,F2,F3 F4

Action: Al
e N\
7 Test: I N\
Faults: F1,F2 Faults: F3F4
Action: A2 Action: A3
Faults: F1 Faults: F2 Faults: F3 Faults: F4
Action: A2 Action: A4 Action: A3 Action: A5

Figure 1: Sample action-based hierarchy

The property given above relating a node to its children may be formally
stated as follows: If anode n=<L, t, a, k> has children L = {n3, ny, ..., nj}, with
each child n; having the form <L;, t;, aj, Fpy>, and the test thas k outcomes { o,

02 ; ..., Ok }, then for each ok for which og n Fp # @, there exists exactly one
child node n i for which Fnj = oxnFp.

Having defined the relationship between a node and its children, we
now state the conditions that define the action for each node. Specifically, we
always associate with a node in the hierarchy the action that gives the best
expected value for the set of faults associated with that node in the hierarchy.
In formal terms, we can define the value of an action for a set of faults by
extension from the definition for a single fault:

28




> PHV(fa)

eFp

2 P
fe Fp

V(Fn,a) =

where P(f) denotes the probability of fault f. Next, we can formally define the
property that the best action, ap, at a particular node in the hierarchy must

have--if the node is n = <L, t, ap, F>, then
V(Fp, ap) = max g A V(Fp,a)
In this case we write
ap=a(Fp)
Having defined the best action for a node, and thus the action-based
hierarchy, we can now specify the algorithm that constitutes the reactive
plan that the agent will use:

Algorithm 1 -- Reactive Plan

Step Description of Step

1 Set the current best hypothesis to the root node, R, in the hierarchy.

2 Perform the test associated with the current best hypothesis.

3 If the test result does not come back before the deadline is reached, go
to step 5. Otherwise, modify the current best hypothesis to the child of
the current best hypothesis corresponding to the outcome of the test
that occurs.

4 If the current best hypothesis is a terminal node, recommend the
action associated with that node and stop. Otherwise, go to step 2.

5 Recommend the action associated with the current best hypothesis and

stop.

Thus, the reactive plan is completely determined once the agent knows the
hierarchy structure. This property of the reactive plan is designed to meet the
critérion described in chapter 2 that the computational resources consumed in
executing it should be minimal. Given this property of the hierarchy
structure, the reactive planner needs to be able to structure the hierarchy. It
is structured using the following algorithm:

29




Algorithm 2 -- Hierarchy Structuring Algorithm
(The Reactive Planner)

Step Description of Step

1 Start at the top of the yet-to-be-built hierarchy, associating the set of
all faults with this top node.

2 Pick a leaf node in the hierarchy in DFS (depth-first search) order, or
stop if there are no more leaf nodes to expand. Associate with this leaf
node the action that has the highest expected value for the set of faults
associated with this node.

3 If the leaf node cannot be expanded further, go back to step 2 and pick
another leaf node.

4 Find all tests relevant to the set of faults associated with the current

node.

5 If no tests were found in step 4, go back to step 2 and pick another leaf
node.

6 Determine which test found in step 4 is best according to some

heuristic.

7 Expand the current node with one child corresponding to each
possible outcome of the test found in step 6, and the associated fault
sets suitably adjusted.

8 Go back to step 2 and pick one of the children of the current node.

The structuring described above is very much like that used in structuring a
decision tree. The only part of this algorithm that is not completely specified
is in step 6--the heuristic used to determine which test is optimal. There are
several possible hierarchy structuring heuristics which could be used.

Section 3.1 -- Hierarchy Structuring Heuristics

A hierarchy structuring heuristic is a function that maps tests to the real
numbers, within the context of a particular node in the hierarchy, such that
the larger the result, the more desirable it is to perform at the node. The
simplest heuristic that could be used is the information theoretic heuristic
used in structuring decision trees [QU83]. Specifically, let the set of faults




associated with the current node be Fp, and compute the following functions

of the test &
PoAD)  PylD)
(o) 108 (Tp(g) )

Po)= Y PuD, o) -

fEOﬁFn fG an

and
P

PuAf) = ioet feo}

We then compute the heuristic as follows:
2P(o)I(0)
oet

This heuristic maximizes the information content gained as one moves from a
parent to child node in the hierarchy. Hence it would be expected, in general,
to take a minimal number of tests to move from the root node to a terminal
node in the hierarchy. However, it does not take into account either the cost
of performing tests, or the value of the best action available at the
intermediate nodes in the hierarchy. Thus, we would expect that we could do
better--in terms of the evaluation criteria proposed in chapter 2--by using a
structuring heuristic that does take these factors into account.

Therefore, we propose an action-based hierarchy structuring heuristic

as follows:
W(t,Fp)-V(Fp)

C(t)
for any set of faults Fp gives the definition of value for a set of faults, and
ZV(O ~n Fp)P(o )
oet

where V(Fp) = max zc 4 V(Fp,a)

) =" ko )
oet
It will be noted that this structuring heuristic takes into account only
temporal costs of tests, not physical costs. As such, it relies rather heavily on a
particular assumption made at the beginning of this chapter--that no more
than one test can be in progress at a time. If more than one test were allowed
to be in progress at a time, and physical costs of tests were not taken into
account, then the agent would be advised to perform as many tests as quickly
as possible, as they have no intrinsic cost. In later sections we will relax this
assumption at the same time as we take physical costs into account.

This gives two possible heuristics for structuring the hierarchy; there
are others which will be introduced later in this chapter. One can hypothesize
about the behavior of an agent executing a reactive plan derived from either

31




of these heuristics. One would expect the agent that is using the action-based
hierarchy to find actions of higher value for shorter values of the deadline.
However, the information-theoretic hierarchy would converge faster on
terminal nodes, so for higher values of the deadlines this heuristic would be
better. Another hypothesis could be that the overall performance (when
integrated over all values of the deadline) is likely to be better for the action-
based hierarchy. As we will see, it will be difficult to prove these hypotheses
formally except in a very specialized case, but experimentally we can and will
test these hypotheses later in the thesis.

At this point a word on nomenclature is appropriate. An action-based
hierarchy is really a type of decision tree. However, because it differs in two
important respects from classical decision trees--there are actions associated
with the intermediate level nodes and the structuring heuristic is different--
and the problem that it is intended to solve is different, we prefer to not use
the term decision tree to describe this structure. The term information-
theoretic hierarchy used in the preceding paragraph is closer to the classical
decision tree in that the structuring heuristic is the same, but there are still
actions associated with intermediate level nodes and it is intended to solve a
different problem than the classification problem solved by classical decision

trees.

Section 3.2 -- Deadline Distributions

The previous sections described the solution to the simplified problem. In this
section and following sections, we discuss approaches for the more complete
problem. In particular, we relax the third assumption stated at the beginning
of this chapter. The action-based heuristic in the last section was a greedy
approach designed to maximize the value gained versus cost ratio at each step
in the hierarchy structuring algorithm. In taking into account deadline
distributions, the planner should use a heuristic that has several properties:

e If the deadline for a particular fault is so short that no test can make

meaningful progress in diagnosing it before the deadline, it is not worth
taking into account the value of the actions that are obtained for that fault.

32




e If the deadline for a particular fault is short--sufficiently short that there
is time for only one or two tests before responding--then the performance
of the hierarchy at the upper levels will be more significant for that fault.

e If the deadline is very long, then the action-based heuristic we use may not
be the most appropriate. The information-theoretic heuristic, which
usually moves one to a goal node more quickly than other heuristics, would

be the most desirable one to use in this case.

We will first give a heuristic that takes the first two criteria into account and
then expand to the third. We first need to build up a set of evaluation
functions that take deadline distributions into account. Whereas previously
we used the letter V for all such functions, we will now use Vg to denote an
evaluation function that depends on deadline distributions. Also, for any
given node n in the hierarchy, we will denote the elapsed time in getting to
that node by E,. We thereby define the value of an action for a fault as

follows:
Vy(£a,Ep) = J' = DAOVI£a)dt
n

Intuitively, an action only has value if the agent has not yet reached the
deadline, so in determining the expected value for an action, we need to

compute the probability that the deadline will not yet have been reached. As
before, we can define the value for a group of faults Fp:
Y PO ValfaEp)
fe Fn

A1)
fe Fp

We can then denote by 34(Fp,Ep) the actiona that maximizes the above

VGd(Fp,a,Ep) =

function. Next we can define the value of the best action for a fault over a

particular time interval as follows:
Vi(f,a,Epi) = | Ent DAty VI£a)dt

Ep
We can compute this over a set of faults:
. fe Fn
VG](Fn,a,En,I) = ZP(f)
fe Fn

and then make it independent of the particular action by using the best action:
VI(Fp,Ep,i) = VI(Fp,ad(Fp,Ep),Ep,i)

33




The resulting heuristic that takes into account deadline distributions can now

be given:
C(t)

where

VGd(FnEn) = max ge A VGd(Fp,a,Ep)
for any set of faults F gives the definition of value of a set of faults after a
particular time interval Ep, and

Y VedlonFp,Ep)P(0)
oet

VGd( t’Fn’EH) = ZP( O)
oet

Although developing this heuristic required a fair bit of mathematical
machinery, the actual intuition behind it is quite simple.

1.00

0.75 —
Value of Action A1l

Best Action .50 -
To Date
Action A0
0.25
0.00
0 1 2 3 4 5
Deadline
Figure 2:

Deadline Distribution Affects Hierarchy Structuring

Figure 2 shows how this analysis works. This figure shows hierarchy
performance on a single fault. The deadline is assumed to be uniformly
distributed between O and 5. Initially, there is just one root node in the
hierarchy, and the action associated with that node, AO, has value 0.25 for this
particular fault. The solid black area represents the value of this hierarchy
for this fault. However, if we perform a test that takes time 2 to come back, we
will get a better action, Al, for this particular fault. Now the value of the
hierarchy is given by both the black and striped areas shown above. The
structuring heuristic that we use is the difference between these two areas,




shown by the striped area, divided by the cost of the test. We note how this
takes deadline distributions into account: had the deadline been uniformly
distributed between 0 and 1.5 (not 5), then there would be no striped area at all
in the above graph, and hence the test would have zero value for this
particular fault. The above mathematical formulae compute the striped area,
averaged over all possible faults.

As mentioned earlier, this heuristic takes into account two of the three
criteria mentioned at the beginning of this section. Its major drawback is that
it is an essentially greedy approach which does not take into account the
possibility that the deadline may be far in the future and immediate returns
are less important than long-term results. However, we already have a
heuristic that takes this into account--the information-theoretic heuristic
mentioned in the last chapter. So we have the two heuristics--one which it is
hypothesized is better in the long-term, and the other is hypothesized to be
better in the short-term. The question then becomes one of how we combine
the two heuristics into a single one in a natural way.

Essentially the agent is interested in only one thing--the value of the
action that it ends up performing. The two heuristics that we have measure
different things. The action-based heuristic measures the immediate value of
the improved action gained by performing a test, while the information-
theoretic heuristic, which makes the best use of time for long deadlines, we
are hypothesizing is a good predictor of the value of future actions (until we
verify this experimentally later on this will be only a hypothesis). Whenever
a test is performed, there is a certain potential value of that test that would be
reached only if the test has zero cost and finds actions of value 1.0 for all
faults. After the test is performed some value will actually be gained--the
value of the improved actions obtained by performing the test. And some
potential value will be lost--the difference between a perfect action and the
actual action obtained should the deadline be reached while the test is being
performed. This is illustrated in Figure 3, which shows these concepts applied
to the situation shown in Figure 2. The initial value of the best action is 0.25,
which is represented by the black region. Because potentially there could be a
test with zero cost that identified an optimal action, all the rest of the diagram
represents the potential future value at time zero. When the first test is
performed, taking time 2, it identifies an action, Al, which has value 0.5. Now
the gray area is essentially lost value--if the deadline occurs between time O

35




and time 2, the best action will have value 0.25, and there is now nothing the
agent can do about it. On the other hand, the striped area represents the
current value at time 2, in addition to the black area. Now, only the white area
represents potential future value. ,

It is important to realize that the term potential future value being
referred to here represents the potential future value given that the
hierarchy has only been expanded down to a particular node. It is therefore a
concept that has meaning only at reactive planning time, not when the agent
is executing the plan. Nevertheless, at hierarchy construction time, the
reactive planner has available to it only information about the state of the
hierarchy above the node it is trying to expand, so it is appropriate that its
heuristic be based only on this information.

Potential Future Value at Time 0

: \ Potential
0.75 — Future Value
at Time 2

Value of
Best Action 0.50
To Date

0.25

0.00

Deadline

Figure 3:
Potential vs. Actual Values of Action

The heuristic that we propose using is to calculate both the value that will be
realized by performing a particular test, and the percentage of the potential
future value that the reactive planner expects will be realized. Furthermore,
the information-theoretic heuristic is used to estimate what percentage of
potential future value will actually be realized. In other words, we use the
following heuristic:

A+ PI




where A is the action-based heuristic, P is the potential future value, and I is
the information-theoretic heuristic. Here A is the action-based heuristic

taking into account deadline distributions described earlier:
- C(t)

I'is the information-theoretic heuristic given as a percentage. The

information-theoretic heuristic is originally expressed as a negative number
representing the number of bits of information needed to completely diagnose
a fault. Therefore by comparing the number of bits of information still
needed at the parent node to the number gained in moving to a child node, we
can express the information-theoretic heuristic as a percentage. Specifically,

this works as follows:

> P(o)I(0)
[=1- ost
Datil log (_P(D__)
P(Fp) P(Fp)
feFp

Finally, the reactive planner needs to be able to compute P, the potential

future value after performing the test. It is given by the following formula:
P = Vp(Fp,Ep + C(1))

where
S POV
plfnB) 6]
fe Fn
and

Vp(£E) = [EDft)dt
Our hypothesis for the performance of hierarchies constructed using this
heuristic is that they will perform roughly as well as the maximum
performance of either the information-theoretic or the action-based deadline
distribution heuristic.

Section 3.3 -- Multiple Tests at a Time

We now seek to relax the first and second assumptions stated at the beginning
of this chapter. Specifically, the planner now takes the physical cost of tests
into account in deciding when to perform a test. The idea is that the reactive
agent may wish to perform a test in advance of its really being needed so as to

37




avoid the delay in acting that would be involved if it had to wait for the test’s
outcome later on. That is, when the agent reaches a particular node in the
hierarchy in its diagnosis process, it may decide to perform not only the test
associated with that node but also the tests associated with one or more of its
children or other descendants. The process by which it does so is known as
test promotion because it involves “promoting” a test so that it is performed
earlier than it is really needed. The hierarchy is first structured using the
deadline distribution heuristics described in the last section (deadline
distribution is essential to take into account in deciding whether to do test
promotion). Then the test promotion process is done. Test promotion involves
deciding whether the cost in performing a test earlier than necessary is
greater than the benefit gained by performing it early. The basic algorithm is
fairly simple:

Algorithm 3 -- Test Promotion

Step Description of Step

1 Structure the hierarchy using the algorithm given above.

2 Set the current node to the root node in the hierarchy.

3 First recursively do test promotion by executing steps 2 to 4 with the
current node being set to each of the children of the current node.

4 Then for each child in turn of the current node, determine whether
the performance profile will improve or be worse if the tests for that
child are moved to the current node. If the profile will improve, move

the tests up.

In order to execute step 4, we need to expand the notion of a node to be a 6-
tuple <L, t, a, |, E, Q> where Ej is the amount of time that will have elapsed

in executing the reactive plan in getting to this node, and Q is a set of ordered

pairs of tests and times, representing the set of tests that will have been

performed up to and including the time this node is reached in the reactive
plan. The values of the E;; may be computed top-down as follows:

ER = O for the root node R
If anode <L, t, a, Fp, Ep, Qp> has a child <L; tj, aj, Fﬂi’ Enj» Qn1> then

Ep; = max (Ep, Qp(t) + C(1))

Initially the Qp’s are set as follows:
an =Qpu {<t1-,Enl.>}

38




At all times the @’s must obey the following property: if for some test tj there
is an E such that <t;,E> e Qp;but no Esuch that <t;,E> € Qp, then E = Ep,.

Intuitively, this means that when the test promotion process begins in
the hierarchy structuring process, all tests are performed only when the node

requiring the outcome to the test is reached. What is at issue in deciding to
“promote” the test(s) associated with node n; to the node n is whether the tests

that are performed when node nj is reached would be better performed

earlier--when node n is reached. If the decision is “yes” then the following
substitution will take place:

e For each <tj,Ej> in Qp i if there is no <tj,E> e Qpfor any E, then do:
Qp e Qqu {<tjEp>}
® an « Qp
e The Qand E values for all nodes below n; in the hierarchy will need to be

modified to be consistent with the above properties.

In order to decide whether to promote a test, we need to compare cost and
performance profiles for the node n for the case where we promote the test
versus the case where we do not promote the test. The performance profile
will be the integral of a step function defined for time points greater than or
equal to E,. It is equal to the weighted average of the performance profiles

for individual faults:

Vin) = zP(f) J' = DAOVIEn,Ddt
fGFn n

The performance profile for each fault may be computed recursively. Suppose
that there are k outcomes of the test t, {01, 07, ..., Ok}, such that fe 0;. (Actually,
because in the current section the assumption is that test outcomes are
disjoint, for the moment k = 1, but the more general analysis is provided here
to avoid needless repetition in the next section.) Then if the corresponding
children nodes are <Lj, tj, a;, Fni Eﬂi’ an> for 1 <i< k, the recursive definition

for the performance profiles is:
V(fn,t) = V(f,a) for Ep<t< Epq

k
Vfn,t) = 1; ZV(f,nj,t) for t2 Ep;

x|
and for leaf nodes:

39




V(£n,t) = V(f,a) for t2 Ep

In order to determine whether to promote a test, the reactive planner also
needs to compute cost profiles. In so doing, the agent will for the first time
take into account the physical costs of tests defined in the last chapter. Cost
profiles are defined recursively in a similar way to performance profiles:
S(n) = ZP(f) J' 5., DAOS(Emnat
feFp

However the basic definition of cost differs from that of performance. The
cost at any point in time refers to the sum of the physical costs of all tests

performed up to that point in time. Formally,
Sfn,t) = Y S(ny(x) for Ep<t< Epq

xe Qp

where =1 (x) denotes the first (test) element of x. Also:

k
S(f,n,t) = 1E Y S(£n;t) for t 2 Ep,

=1
and for leaf nodes:
S(£,n,t) = ZS(nl(x)) for t= E,
Xe Qp ‘
Having completed this analysis of cost and value profile, the reactive planner
will promote tests if the value-cost difference V(n)-S(n) is greater after test -
promotion than before.

One final point which needs to be raised is that if this difference is
negative, the cost of further diagnosis from this node exceeds the benefit, and
the agent, when reaching this node in the hierarchy, should call a halt to
performing further tests and immediately perform the action associated with
the current node regardless of when the deadline is.

This algorithm for test promotion is essentially a hill-climbing
algorithm. Thus, we know that the final reactive plan that results from the
final hierarchy will be better, on average, than the one we start with.
However, it cannot be guaranteed that there may not be still better reactive
plans that lie hidden in the search space. Nevertheless, this algorithm seems
likely to promote the most important tests: if a test is quite low cost but
delaying performing it would be very expensive, then this algorithm will
detect this and do so. Thus, the proposed algorithm seems to represent a




tradeoff between the need to produce something computationally tractable and
something that would produce the optimal hierarchy.

Section 3.4 -- Non-Disjoint Test Outcomes

The assumption has been made to date that the outcomes for a test are always
disjoint, or alternatively that each test is a partition of the set of faults or that
any test has exactly one possible outcome for a given fault. In this section we
examine what happens when this assumption is relaxed to the weaker
assumption that a test may have multiple outcomes consistent with a given
fault, but those outcomes will all be equally likely in the presence of that fault.

The primary difference that this imposes is that now it is possible for a
node in the hierarchy (which corresponds to a set of faults) to have multiple
parents, whereas before a node could have only one parent. It will therefore
be necessary for the agent, in executing the reactive plan, to keep track of the
set of tests that have been executed in reaching a particular node in the
hierarchy. Furthermore, each node will have associated with it a set of tests,
instead of just a single test, and when the node is reached, the highest ranking
test on that list that has not previously been executed will be performed. Each
node will have a number of sets of children, one set corresponding to each of
the tests that can be performed at this node in the hierarchy.

Structuring the hierarchy will be proceed similarly to before. The only
difference will be that when a child node is potentially to be created, the
reactive planner will look at the list of existing nodes and determine whether
a node already exists with the same set of faults. If so, no new child node will
be created, but rather a pointer will be created to the existing child node. The
planner will then determine whether there is a test to be performed at the
child node consistent with this trajectory through the hierarchy. If there is
not, further expansion of the child node will be necessary; if there is, then no
further expansion is necessary. Step 6 in the hierarchy structuring
algorithm will change to determine the best test among those that have not
already been performed in reaching this node in the hierarchy.

Formally, the only difference is that the 6-tuple that defines each node
now becomes: ,

<<Ly,ee,Lg> <t 500t a,Fn,<En1,e Enk><Qn1se Qrk>>
so that essentially each node now has a set of children sets instead of just one.

41




One important assumption has been made in order to reduce the
possibility of a combinatorial explosion in expanding the search space. This
regards the prior probabilities of lower nodes in the hierarchies. Because of
the differing numbers of competing outcomes that different faults may have
for a given test, the prior probabilities of faults in lower nodes in the
hierarchy may not be in the same proportion as the original prior
probabilities of the faults. However, the above approach assumes that they
are. The reason this simplifying assumption is made is that were it not for the
pruning of the search space that occurs when different branches lead to the
same node, the search would quickly become computationally intractable. If
we needed to have a different node for every possible combination of prior
probabilities, much less pruning would go on. It is not clear to what degree
this assumption will degrade performance. It seems likely that if the original
probabilities differed by an order of magnitude, the assumption would not
affect structuring and performance much; if they were a lot closer, then it
would make more of a difference.

Section 3.5 -- Multiple Faults

There are essentially four possible approaches that can be taken to handling
the multiple fault problem. The first is that when we assume that tests may
have non-disjoint outcomes, it becomes entirely plausible that certain leaf
nodes in the hierarchy will include multiple faults. In this case, actions can
be designed for that combination of faults rather than for individual faults.
This possibility for diagnosing multiple faults occurs naturally as a result of
the work described up to this point, and does not require any further work on
the part of the reactive planner.

For example, a particular test may have three outcomes:

{F1,F2,{F1,F2}}

meaning that either fault 1 is present (only), fault 2 is present (only) or both
faults are present. If the third outcome to this test occurs, and there are no
other tests that distinguish between these two faults, then the diagnosis of the
pair of faults F1, F2 can be made.

The second approach is to specifically encode in the knowledge base
information about certain pairs or small sets of faults that are known to have
interesting interactions that the agent should know about. Obviously, it would

42




not be possible to do this with all possible combinations of faults, but it should
be possible for the most likely combinations of faults. These combinations of
faults will then become, for the purposes of both the reactive planner and the
reactive agent, single faults. Only the designer of the knowledge base will
know that they are actually combinations of faults. This approach seems
reasonable in view of the fact that it is not the goal of the reactive agent to
encode responses to all possible contingencies, but rather to be prepared to
respond to the most important and urgent faults and combinations of faults in
a timely fashion.

A more sophisticated version of this approach is for the reactive
planner to explicitly know the component faults of these important
combinations of faults. This would allow the reactive planner to use the
knowledge about the value of an action for a particular fault in the presence
of other faults (which may differ from the value when the single fault occurs
alone). However, the reactive planner would still, for the purposes of
executing the hierarchy structuring algorithm, represent this combination of
faults as a single fault.

The third approach is to allow the execution of any test to return
multiple outcomes, so that a single search through the hierarchy by the
reactive agent may lead to diagnosing multiple faults. This approach requires
that the agent be capable of making a control decision as to which branch of a
hierarchy to explore next in the event that it discovers the presence of
multiple faults. The most reasonable way of doing this appears to be to.use the
same heuristic that is used to structure the hierarchy to also decide which
branch of the hierarchy to explore next in invoking the reactive plan.

The final approach is applicable in the case of dynamic replanning, and
requires that the knowledge about values of actions in the presence of
multiple faults be available. This approach is simply to notice that when doing
replanning, knowledge about certain occurring faults may already be
available, and the fact that these faults are present can be used to structure the
hierarchy. '

These different approaches to handling multiple faults are not intended
to be mutually exclusive. Indeed, all four approaches could be used by the
same agent. The multiple fault problem is a difficult one and by providing
several ways of dealing with multiple faults, the agent has the best chance of
being able to deal with them effectively.

43




Section 3.6 -- Related Work

The idea of vafying the heuristic in structuring decision trees is not new.
What is new about this application of decision trees is that they are being used
not merely to do classification, but also to provide meaningful responses in the
interim when a complete classification is impossible. Since the heuristics used
here are tailored to this application, they have not been previously used in the
literature. It is because of this substantially different application that we
prefer a different term, action-based hierarchies, for our decision trees.

There is a fairly extensive body of literature devoted to exploring
different heuristics for decision tree structuring. An information theoretic
heuristic is used by various researchers: by Cheng et.al. in GID3 [CH88], by
Fayyad in GID3* [FA91], by Quinlan in C4 [QU90], by Breiman et.al. in CART
[BR84], and by Clark and Niblett in CN2 [CN89].. Fayyad and Irani introduce a
class separation approach (C-SEP in [FA92]) where the heuristic measures not
the information content of a test but the degree to which it separates fauits
into the different classes. This presupposes, however, that the goal of using
the decision tree is to diagnose down to the level of an individual class, not an
individual fault. It is unclear, therefore, how this approach could be applied to
the current problem without some delineation of classes that would in turn
require applying the action-based heuristic first. GID3 and GID3* differ from
ID3 (the original information-theoretic approach of Quinlan) in that only
some of the outcomes of a test are used in branching. Many other approaches
have also been taken in the literature.

A novel approach to structuring decision trees, oblique decision trees, is
introduced by Murthy et.al. [MU93]. The idea here is that their algorithm, OC1,
determines the optimal oblique hyperplane with which to split the set of data
points. The equivalent problem for us would be to design our own tests, rather
than using a pre-defined set of tests from a given domain. This would be an
interesting topic for further research, but is beyond the scope of the current

paper.




Chapter 4
Complexity Analysis

Although the main focus of the research described in this thesis is to produce
reactive plans that can be executed with a minimum of computational
resources, an analysis of the complexity of the reactive planner is also
necessary because if it is prohibitive to use the reactive planner (if its
complexity were exponential in the size of one of its inputs, for example) then
the approach would be less attractive. This analysis is also important in the
event that any dynamic replanning is done because it will shed light on how
expensive that task is, and also on the number of faults that can reasonably be
handled in a reactive plan.

There is also a space complexity issue involved. Potentially, there is one
node in the hierarchy for every subset of the whole set of faults. If this
exponential potential ever came close to being realized, then there would not
be sufficient space to represent the reactive plan. Also with regard to space
complexity, one of the assumptions made in structuring the hierarchy was
designed to reduce the space complexity of the reactive plan. This assumption
was that the prior probabilities of the faults at any node in the hierarchy are
in the same proportion as they are at the root node of the hierarchy. The
reason for this simplifying assumption was to eliminate the need to have
separate nodes for the same set of faults with differing probabilities; if this
were allowed, then the potential to use up a lot of space in representing the
different probabilities for the same set of faults would be great.

There is no space complexity issue for the reactive planner independent
of that of the reactive plan generated. That is, the reactive planner does not
use significant space in generating the reactive plan beyond the space
required to represent the plan itself, so if there is sufficient space to represent
the reactive plan, the reactive planner will have no space difficulties.

The time complexity of the reactive plan is, by design, trivial. The only
tasks in executing the reactive plan are to recommend tests when the
appropriate node in the hierarchy is reached, and in the case of multiple
faults, to handle the control problem of which path through the hierarchy to
examine first. The former case is merely a table lookup, and the latter
involves comparing the two (or more) heuristics for the different parts of the

45




hierarchy, which is also trivial. This shows that although in theory it is
necessary to analyze the complexity of both the reactive plan generated and
the reactive planner, all that really needs to be learned can be determined by
looking at the complexity of the reactive planner.

In general, the biggest difficulty in analyzing the complexity of the
approach described in chapter 3 comes in estimating the number of nodes in
the generated hierarchy; this issue affects both the time and space complexity
of the approach. The number of nodes can be reduced by coalescing repeated
nodes (different nodes with the same set of faults, etc.) into single nodes,
producing a decision graph as opposed to a decision tree. This problem is easy
in the case where the outcomes of tests are disjoint, because then there will be
one terminal node for each fault, and fewer non-terminal nodes than there
are faults. When the set of test outcomes is non-disjoint, there is as was
mentioned above potentially one node in the hierarchy for each subset of the
set of faults, which would be a prohibitively high space cost. However, in
practice it does not work out nearly so badly, so the formal analysis will be
augmented by actual examples from a real domain--surgical intensive care
unit patient monitoring. A description of this domain may be found in chapter
7.

A further simplification in the complexity of running the hierarchy
structuring algorithm occurs because it is not in general necessary to have an
explicit representation of the value of each action for each fault in order to
run the algorithm. Specifically, it is possible to represent each action as
having value only for a few faults, and having a fixed cost which does not
vary depending upon the fault. Computationally, this will greatly simplify the
algorithm. It should also be noted that the information-theoretic approach
does offer an advantage over the action-based approach in terms of the
complexity of structuring the hierarchy, largely because it takes into account
only the prior probabilities of the faults, whereas the other heuristics take
into account a variety of other variables. In the remainder of this chapter we
will examine in more detail how significant this advantage is.

Section 4.1 -- Basic Problem

We first give the complexity for the solution to the basic problem described in
section 3.1. Time complexity will be defined in terms of the following:

46




. the number of faults, given by

. the number of actions, given by a
° the number of tests, given by t

. the mean number of outcomes to a test, given by o

We first define the time complexity of expanding a particular node n which
has n faults associated with it. We first need to compute, for each test, the
intersection of the outcome sets with the fault set associated with the node--
this will take O(on) time on average. The next step is the time to determine the
best action for each potential child set, which will be O(an) on average, so the
time so far is O((a+o)n). These represent the time-dominant steps in the
algorithm--but they must be repeated once for every test, for a total of
O(t(a+o)n) time. So this gives the time complexity to expand a given node.
There are O(f) nodes in the hierarchy, and the average node has at most f/2
faults associated with it. This gives a total time complexity of

O(t(a+0)f2)
Since there are O(f) nodes in the hierarchy with f£/2 faults associated with
each on average, the space complexity will be

0(f2)

However, the time complexity given above assumes that each action has an
interesting non-zero value for each fault. If value of actions are represented
such that the value of each action is non-zero for only a small percentage k of
faults, then the time complexity is greatly reduced to

O(kt(a+0)f2)

Now, with regard to time complexity of the information-theoretic
structuring heuristic, the main saving will be that one does not have to
compute the value of each action for each fault, so it is reduced to

O(tof?2)
In principle this is considerably better than the action-based case, so this
would be a point in favor of using information-theoretic hierarchies. Note,
however, that if the percentage of actions with positive value for a given fault
is small, something that one would expect to be true in general in most
domains, then k will be small and the time complexity for the action-based
case will be roughly equal to that of the information-theoretic case--no
similar saving can be realized for the information-theoretic casé. Thus, in

47




practice it seems that there will be little savings in time complexity by using
the information-theoretic hierarchy.

It also needs to be noted that this is a worst-case scenario where each
test only succeeds in ruling out or identifying one fault. The best-case
scenario, which is likely to be closer to average, gives a time complexity of

O(kt(a+o)f log,f)

for the action-based case and
O(tof logof)

for the information-theoretic case. These complexity values use a hierarchy
depth of logpf which is the best possible case given the assumptions made.

Section 4.2 -- Deadline Distributions

Addressing the complexity of the solution to the deadline distribution problem
first requires that one evaluate the complexity of actually computing the
integrals provided in the approach to this problem. The assumption that will
be made is that the integrals can be computed in constant time. This
assumption is made for two reasons: first, many distributions will not actually
be given as complex functions to be integrated but rather as simple step
functions. For example, it might be given that a particular fault has a deadline
between 20 and 30 minutes or with a mean of 25 minutes. In the former case, a
uniform distribution can be assumed, and in the latter case, a normal or
exponential distribution can be assumed. It is not that these assumed
distributions are likely to be perfectly accurate, but rather that there is
unlikely to be any precise formula for giving a perfectly accurate
distribution, so approximations must be used. In any event, these
approximations have known easy methods for computing the integral which
are constant time.

Second, even in the event that a complex function requiring Simpson's
rule to integrate, an approximate Simpson's rule evaluation using the value of
the function at perhaps 16 points should be sufficiently accurate for the
purposes of this problem, and will require only constant time to compute.

Under this assumption, the complexities for the deadline distribution
case will be exactly the same as when the deadline distributions are not taken

into account--for time, it is
O(kt(a+0)f logyf)




and for space it is

O(f logpf)
These are average complexities. Of course, the actual time taken to structure
the hierarchy will be longer for the deadline distribution case; it is just that it
has the same order of complexity because it differs by a constant factor.

Section 4.3 -- Test Promotion

Because the first step in the test promotion algorithm is to structure the
hierarchy using the regular deadline distribution approach, the complexity
for that portion will be the same as above. It is therefore the second part of
the algorithm, where actual promotion of tests is done, that we are concerned
with here. In order to determine this we look at the complexity of doing test
promotion for a given node in the hierarchy. The two steps in test promotion
are first to ensure that accurate timing information is known for all lower
nodes in the hierarchy. If the node is n with an associated fault set of n faults,
then this process will take time proportional to the number of faults, hence it
is O(n). The second step is to determine the cost and performance profiles for
each fault in the fault set, and then average them. This will be proportional in

cost to the number of faults multiplied by the average depth of the hierarchy
below node n, and hence it is O(n logn) (given the depth of the hierarchy

below node n is logzn). Thus the time complexity of doing test promotion for a
single node is O(n logyn). To do it for the entire hierarchy the time
complexity will be
O(f2 logyf)

Space complexity will not change by virtue of doing test promotion. It should
be noted that depending upon the relative sizes of f and kt(a+0) it may be
either the test promotion phase or the regular structuring phase of the
process that is dominant in terms of the time consumed. However, in general
one would expect that the latter term would be larger, and hence the test
promotion phase of the algorithm is cheap compared to the rest of the
algorithm. In other words, there is little reason not to do test promotion if one
is going to do the rest of the algorithm.

However, two caveats must be noted here. The first is that there is little
obvious that one can see to do to reduce the time complexity of the test
promotion phase. For the structuring phase, providing explicit

49




representations only for those actions with positive values for particular
faults provides, in practice, significant savings in time complexity. For the
promotion phase, the above complexity seems to be about the best one can do.
It should also be noted that although test promotion guarantees a better
hierarchy than the one started out with, it does not guarantee the best possible
hierarchy. That is for two reasons: test promotion always moves tests up, not
down, and there could be cases where moving a test back down provides even
better performance; and tests are moved up or not as blocks, not as individual
tests. To produce an algorithm that used test promotion to produce the best
possible hierarchy would likely be NP-complete.

Section 4.4 -- Non-disjoint Test Outcomes

As outlined above, the case where test outcomes are non-disjoint is awkward
because it is difficult to estimate the actual number of nodes in the hierarchy.
First off, non-disjointness increases the time complexity of finding the best
action for each child node set to O(aon) from the previous value of O((a+0)n).
As before, this must be repeated once for each test, giving a complexity for
expanding each node of O(taon). If the total number of nodes in the
hierarchy is s then the total time complexity of doing hierarchy structuring is
O(staof).

How does one measure the number of nodes in the hierarchy? One way
of doing it is to estimate the discriminating power of particular tests. If the
average outcome of a test reduces the fault set to a certain proportion r of its
original size, then it is possible to estimate the total number of nodes in the
hierarchy to be s = f108k0, which therefore results in a total time complexity
of

O(taof1-logk(0))
which is polynomial in the number of faults f.

However in practice it is not so bad. In the medical intensive care unit

domain described in chapter 7, the problem has, approximately,

t=45, a=58, f=58, 0=3, k=0.9
The expected number of nodes would therefore be 2.44 x 1018 if the above
formula were to be believed! The actual number of nodes in the generated
hierarchy is a quite manageable 105 nodes.




This enormous (and advantageous) difference between the theoretically
predicted and actual number of nodes is caused primarily because the theory
assumes essentially no structure on the problem, whereas when an actual
problem is presented, it is quite well structured and hence what would have
been a combinatorial explosion of nodes becomes a quite reasonable
hierarchy. The experience with this particular problem would appear to
indicate that the number of faults represents a good order of magnitude
estimate of the number of nodes in the hierarchy, even though theory
predicts something much worse.

It is interesting to note that the hierarchy structuring heuristic
appears to have some bearing on the number of nodes in the generated
hierarchy. When the information-theoretic heuristic is used, the number of
nodes in the hierarchy is 376. When the action-based heuristic is used, the
number of nodes drops to 276 even when costs of tests are not taken into
account; when costs of tests are taken into account the number drops to the
above-mentioned 105. It thus seems that the action-based heuristic, although
not designed to reduce the number of nodes in the hierarchy, has this effect
in this particular domain, and furthermore that considering the costs of tests
is an important component in keeping the number of nodes down. It would be
interesting to explore the reasons why this is the case.

When deadline distributions are taken into account, there should be no
change in time complexity of the structuring algorithm, for the same reasons
as described in section 4.2.

If test promotion is done, then as before there are two steps to this phase
of the algorithm: determine accurate timing information for lower nodes in
the hierarchy and then determine cost and performance profiles for each
fault. For a given node n with n nodes below it in the hierarchy (this is a
different definition of n than that used previously) the time taken to
determine timing information will be proportional to n (O(n)). For
determining cost and performance profiles, the time complexity will be the
number of faults multiplied by the number of nodes: O(nf).

This gives time complexity for test promotion of one node in the
hierarchy. For the average node in the hierarchy, the number of nodes below
it will be roughly equal to the square root of the total number of nodes in the
hierarchy, so if s is the total number of nodes in the hierarchy, then the total
time complexity is given by

51




0(53/2f)

In this case, test promotion may be the dominant part of the algorithm (note
that in the non-disjoint case, it usually was not the dominant part). The reason
is that the number of nodes (which is the large uncertain factor in this
process) has a higher exponent for the test promotion part of the algorithm
than for the structuring part of the algorithm. Since the number of nodes is
potentially quite large, if this potential is realized, it may be wise not to
proceed with the test promotion phase of the algorithm.

To summarize what we have learned about complexity thus far in this
chapter: for the non-disjoint case both time and space complexity are quite
reasonable, especially if the fact that values of actions need be represented
explicitly for only a few faults is taken into account. However, when test
outcomes become non-disjoint, the number of nodes has the potential to
increase dramatically. In practice, it has been observed that at least one
problem domain is sufficiently well-structured that this unhappy outcome
does not occur. If the number of nodes is large but still manageable, then it
may be unwise to perform the test promotion algorithm, since that part of the
algorithm may put things outside the range of being computationally
tractable.

Section 4.5 -- Multiple Faults

Chapter 3 outlined four possible approaches to the multiple fault problem. Two
of these approaches--incorporating knowledge about co-occurring problems
into the hierarchy itself and having the reactive plan execute tests for
different areas of the hierarchy at the same time--do not bear directly on the
hierarchy structuring problem. Performing searches of multiple areas of the
hierarchy occurs at run time after structuring is complete, and hence has
nothing whatever to do with complexity. Putting knowledge about co-
occurring faults into the hierarchy requires knowledge about combinations of
faults to be available to the structuring algorithm and hence, for complexity
purposes, is a sub-case of the fourth approach described below. Another
approach, using the non-disjointness of test outcomes as a means of
diagnosing multiple faults, arises naturally from the hierarchy structuring
algorithm and requires no further analysis.

52




The fourth approach is for the hierarchy structuring algorithm to
know about interesting combinations of faults and to treat these combinations
as single faults in structuring the hierarchy. There were actually two
different ways the hierarchy structuring algorithm could handle this. One is
for that algorithm to simply deal with the combinations of faults as though
they were single faults and not have any knowledge at all that they are really
combinations of faults. In this case, the effect on complexity is obvious: it
simply increases the number of faults and hence changes all complexity
values dependent on the number of faults, but there are no other changes in
complexity evident.

The more sophisticated approach was for the hierarchy structuring
algorithm to know about particular combinations of faults as combinations of
faults (not as single faults) and also have knowledge about the values of
actions in the presence of other faults (which may vary from the value if no
other faults are present). In this case, suppose that for any given fault-action
pair, there are c different combinations of other faults, with an average of 1
faults each, that the hierarchy structuring algorithm knows about and knows
how they affect the value of the action for the fault. For each such
combination, the structuring algorithm must determine first whether it is a
subset of the fault set of the current node: this takes on average O(l) time.
Then the structuring algorithm must determine which of the combinations of
faults are maximal subsets; this can take up to O(c2l) time; the total time taken
to determine the value of the action for the fault is thus O(czl). The effect on
the time complexity of the entire algorithm will thus be as though the number
of actions was increased from a to ac2l.

This amounts to a greater time complexity price to pay in terms of
structuring the hierarchy for the more sophisticated approach, which is what
one would expect. The correct approach would be to try to keep ¢ and 1 as low
as possible. In fact, if the added information is known only about a few small
combinations of faults, then these values will be only slightly greater than 1,
and hence the effect on time complexity of the structuring algorithm will be
minimal.

As mentioned previously, if knowledge about certain faults being
present is already known to the hierarchy structuring algorithm, then this
information can be used to help structure the hierarchy. This will not affect
complexity in any significant way; it will simply reduce the number of faults

53




that must be considered slightly, and will force examination of all other faults
under the assumption that certain faults are present.

There is nothing stopping one from using a combination of the two
approaches, of course, providing detailed information about the most common
combinations of faults and providing the less detailed information about the
less common, but more numerous, combinations. Indeed, it seems that the
greatest cost to be paid in terms of knowing about multiple faults is in the
knowledge acquisition phase, not the hierarchy structuring algorithm.




Chapter 5
Formal Results

Ideally, one would be able to prove formally that the approach presented in
chapter 3 represents the best possible solution to the problem given in
chapter 2. If this could be done, the thesis could immediately be concluded
without the need for any experiments or examples! Although it turns out this
cannot be done, in this chapter three formal results will be presented. The
first result shows that under certain well-defined assumptions, the action-
based hierarchy provides the best performance in the strong sense that no
matter what the value of the deadline and no matter what other structuring
heuristic might be used, the action-based hierarchy will perform at least as
well. The second result gives similar results in the case where the hierarchy
is very small. The third result shows that when test promotion is done, the
performance of the resulting hierarchy will be at least as good as the
hierarchy that it replaces.

Section 5.1 -- Optimal Action-Based Hierarchies

The assumptions that are required to make the claim that action-based
hierarchies provide optimal performance are the following:

e All the assumptions made for the most basic version of the problem
described in chapter 3 must be made.
¢ In addition, one of the following two conditions must hold:

e The temporal costs of all tests must be equal.

e There must be no time wastage at the deadline: that is, the deadline does
not occur during the middle of performing a test but rather
immediatetly after a test result comes back.

¢ The really strong assumption that must be made is that the values of tests
are additive for each fault. The value of a group of tests for a fault is the
amount by which the value of the best action available for that fault
improves after performing the group of tests versus what its value is
before performing the group of tests. Additivity means that the value of
any group of tests is the sum of the values of performing each test.

35




Under this set of assumptions, the value of the best action can be taken to
improve continuously as a linear function. This may not actually be true (the
value improves as a step function) but the second assumption means that it can
be taken to be true. If there is no time wastage at the deadline, then the
improvement in the value of the best action between one step down the
hierarchy and the next can be taken to occur linearly over that interval,
because it is not really impoftant exactly how it occurs. If the temporal costs
of all tests are equal, then the performance of the hierarchy can be taken to
be the same as if there were no time wastage at the deadline.

Performance can be taken to be stepwise linear
1.00 4 because there is no time wasteage at the deadline

~a

0.75
Value of
Best Action 0.50 —
to Date

0.25 C
Actual Performance is a Step
Function

0.00 T | |
0 1 2 3 4
Deadline
Figure 1: Under strict assumptions actual performance may
be approximated by a stepwise linear function

This is illustrated in Figure 1. The actual performance of the hierarchy is
shown by the step function pointed out by the arrows in the bottom half of the
diagram. Because of the assumption that there is no time wastage at the
deadline, however, the only relevant points on this graph are those points
where a refinement of the diagnosis has been made. These points are
illustrated with the small circles. Hence under these assumptions, it is
perfectly reasonable to also assume that the actual performance of the

56




hierarchy is given by the piecewise linear function pointed out by the arrows
in the top half of the diagram. And when the cost of all tests are equal (as they
are in this diagram) if we can show that one hierarchy outperforms another
at all the circled points, then it does so at the intermediate points as well.

What does being able to make this additional assumption buy us? The
slopes of each segment of the piecewise linear function represent the gain per
unit time that performing the corresponding test buys the agent. Because the
value of performing tests is additive, this slope will be the same no matter
when in the reactive plan a given test is performed. Hence it behooves the
agent to perform the highest slope test first, then the second highest, and so
on. This amounts to just the action-based hierarchy structuring heuristic: so
under this set of assumptions the performance of such a hierarchy is
necessarily optimal at all relevant time points.

It is clear that this set of assumptions is far too strong to hold in most
real-world domains: the question is more whether they hold in any domain at
all. One domain in which it is possible that they come close to holding might
be managing a stock portfolio in a volatile market, consisting of a number of
stocks each of which may change in price independently. In such a domain, a
test would consist of analyzing the recent performance of a stock to determine
whether it is necessary to take immediate action to sell or buy shares in it, and
which type of action is appropriate. Additivity of tests comes about in this
domain because the expected value of each stock transaction is essentially
independent of the other transactions. Furthermore, if an approximately
equal amount of data is available for each stock, it may be reasonable to assume
that the cost of performing each test is equal.

In such a domain, the action-based hierarchy approach is guaranteed to
be optimal. However, this domain is not an interesting application of this
technology because it essentially consists of a set of decoupled problems that
the agent is working on. To put these problems together in an action-based
hierarchy would be both space wasteful and unnecessary in view of the fact
that the existing technology of Dean and Boddy's deliberation protocols for
anytime algorithms can handle this type of problem.

It is not clear that any domain in which this set of assumptions holds
does not have this property. The conclusion from this is simply that there is a
strict limit to how far one can go formally with this approach. In the next
section we will consider a different set of assumptions under which it can also




be proven that action-based hierarchies are optimal, but which can represent
an interesting application of this technology.

Section 5.2 -- Very Small Hierarchies

A similar claim can be made--that action-based hierarchies provide better
performance than any possible competitor--under the following conditions
which mandate a very small hierarchy:

e All the assumptions made for the most basic version of the problem
described in chapter 3 must be made.

¢ The temporal costs of all tests must be equal.

e At most two tests are required to complete the diagnosis process (hence the
resulting hierarchy has depth at most two).

Under this set of assumptions, the only possible difference between the
performance of two different hierarchies is at the one intermediate level in
that hierarchy, since the performance of different hierarchies is necessarily
the same at the root node and at the leaf nodes. Given the fact that the costs of
all tests are equal, this difference is quantified solely by the value of each test;
hence performing the test with higher value first is guaranteed to provide an
optimal hierarchy. Which test is performed second is irrelevant as long as it
successfully completes the diagnosis process.

Unlike the simplifying assumptions given in the first section of this
chapter, this set requires that the hierarchy produced be very small.
However, in one important sense this set of assumptions is a much more
interesting set than the one given in the first section. It is possible for all
these assumptions to hold and yet for one still to have an interesting
application of the problem--one where the information-theoretic decision
tree would be less desirable than the action-based hierarchy. The parachuting
example given at the beginning of this thesis is an example of a problem that
meets these assumptions.

In fact, the conclusion one can draw from this section is that the
primary way in which action-based hierarchies might fail (and hence require
experimental validation) is if the greedy approach in selecting the first few
tests results in lower value actions further down the hierarchy, but still above

58




-

the level of the leaf nodes. For that reason, when the experiments are done in
the next chapter, and the number of faults is a power of 2, the minimum
number of faults in a hierarchy will be 8. This is because the results of this
section already formally validate the approach for a 4-fault hierarchy.

Section 5.3 -- Test Promotion

The final observation that can be made is that running the test promotion
algorithm always either improves hierarchy performance or does not make it
any worse. This observation is quite easy to see. Whenever a test promotion is
potentially going to be made, the algorithm always looks to see whether it will
improve or degrade hierarchy performance in the section of the hierarchy it
affects. Promotion is only done if performance is going to be improved.
Because each step of the algorithm either improves hierarchy performance or
does not change it, running the algorithm is guaranteed to not worsen
performance.

This observation should not be taken to mean that test promotion finds
the best possible way to time the performance of tests. There are certain
configurations that it never looks at. However it is guaranteed, by doing a full
analysis of the effects of promoting tests, to not worsen things. Furthermore,
from the observations in the last chapter, the complexity of test promotion is
generally smaller than that of the basic hierarchy structuring algorithm, so it
becomes a reasonable add-on to the algorithm.

3




Chapter 6
Abstract Experiments

As we saw in Chapter 5, the set of conditions under which we can
formally prove that action-based hierarchies provide the best performance is
quite limited. Thus, in this chapter and the next, we shall seek other means of
validating this work. In fact, there will be three separate approaches
described in these two chapters. In this chapter, the values of the inputs to
. the hierarchy structuring algorithm will be assigned randomly without
regard to any specific domain, and the performance derived by using action-
based hierarchies versus decision trees will be compared. If the performance
of action-based hierarchies is found to be better by a statistically significant
margin than that of decision trees, then this will be evidence in favor of using
this approach for structuring hierarchies in real-time domains.

The validation method described in this chapter can both be criticized
and praised on the grounds that it is independent of any particular domain. To
answer that criticism, in the next chapter we will explore validation of the
approach in a particular domain--intensive care unit patient monitoring.

Specifically, in this chapter we wish to evaluate the following two
hypotheses:

© Using the action-based hierarchy will provide substantially better
performance than the decision tree when evaluated as described in chapter
2.

® Using the decision tree will provide substantially better performance when
only speed in reaching a leaf node matters.

Section 6.1 -- Experimental Design

The problem size, prior probabilities, test outcomes, and values of actions for
faults were assigned as follows:

Problem Size-- The problem size was allowed to vary and was equal to the
number of faults, actions, or tests in the domain. That is, the number of faults,




actions, and tests were all kept equal, and this number is what was allowed to
vary.

Prior Probabilities-- The difficulty in assigning prior probabilities is that
although they must be assigned randomly, they must also sum to 1. The
following method was used to assign a set of n prior probabilities (for n faults)
P1, P2, - Pn: First a set of n-1 random variables uniformly distributed on the

interval [0,1] was assigned by a random number generator:
X1, X2, «» Xp-1
Then these numbers were permuted so that they were in non-decreasing
order:
Xip € Xjy € S Xjp g where {i1, ip, ..., ip-1} = {1, 2, ..., n-1}
and finally the priors are assigned as follows:
P1 = Xiys P2 = Xip = Xj1> s Pn-1 = Xip 1 ~Xip.2 Pn=1-Xip 4
The important property of this distribution is that the distribution for each
prior probability generated in this way is the same.
Tests-- The number of tests, n, must be even. For each test, the fault set is

randomly partitioned into two disjoint subsets of size 5 The partition is

n/2
Values of Actions-- The value of an action for a fault is uniformly
distributed in the interval [0,1].

assigned randomly from among the ( n )possible ways of doing this.

In performing these experiments, we added another hierarchy structuring
heuristic in addition to the basic information-theoretic and. action-based
heuristics: a random heuristic. The random heuristic selects a test at random
from the set of all relevant tests that can be performed at a given node.
Formally, this heuristic is defined as follows:

R(t) = Uniform[O0,1] if 3oe t @conFpcFp

R(t) = O otherwise

Section 6.2 -- Statistical Validation

In order to make any claims about the statistical validity of the results derived
from these experiments, we need some means for computing statistical

validity. The method used will be something called the t-statistic [HO47]. The
idea behind the t-statistic is that we observe that a particular variable, say t1,

6l




has values greater than those observed for §. We wish to be able to claim that
the observed difference in value between t and t; is statistically significant.
The t-statistic provides a means of doing so provided that we know the
difference tj - tp is bounded. If the number of observations of t; and tp is n
then the t-statistic is given as follows:
- B
P ———
V2o/\n

where o2 is the variance of the difference t1 - t2. What this tells us is the
number of standard deviations above the mean the observed difference
between tj and £ is. For example, if the observed t-statistic is 2, then we can
say with 97% confidence that the observed difference between f and t; is

statistically significant.

This concept can easily be applied to the current problem. If the
variables V] and V5 represent two different sets of values, one corresponding
to each of two hierarchy structuring heuristics--the method for computing
the value performance of the agent was described in chapter 2--then the
standard deviation of the difference Vj - V; is indeed bounded (by 0.5) so we

can apply the t-statistic and compute the statistical significance of the
observation that Vj values are typically larger than V, on average. For

example, for n = 100, the t-statistic will be approximately 14.1 times the mean
difference between V] and V3, meaning that a difference of 7% corresponds to
one standard deviation above the mean and 14% corresponds to two standard
deviations above the mean.

Actually, it could be argued that one can do much better than this.
Because with very high probability all values in the abstract experiments will
be above 0.5 and based on uniform distributions, it is reasonable to suppose
that the standard deviation will not exceed 0.125, which corresponds to a
difference of 1.75% being one standard deviation above the mean and 3.5%
being two standard deviations above the mean.

We are also in the advantageous position of being able to simply run
further trials if the existing observations do not provide statistically
significant results.

~ The t-statistic can also be applied to evaluate the claim that a particular
hierarchy structuring heuristic is better for a particular value of the
deadline, although not necessarily for all values of the deadline. Looking at

62




the V(t,f) function defined in chapter 2, we can use it to give hierarchy
performance at a particular deadline value ¢

o= ¥ VILHA)
feF

We can also use the t-statistic to evaluate the claim that a particular hierarchy
structuring algorithm provides performance that is at least a certain

percentage better than another heuristic. For example, suppose we wish to
claim that the set of values Vj is at least 20% better, on average, than the set of

values V. Then we can compute a new variable V3 = 1.2 V and then compare
the values of V1 and V3 using the t-statistic.

Section 6.3 -- Experiment Results

Mean Value O.
Of Best
Action g,

0.

0. ABH DT ABH DT ABH DT ABH DT
8 16 32 64
Problem Size

Figure 1: Hierarchy Performance Based on Problem Size

Figure 1 shows the results of the experiments for problem sizes of 8, 16, 32, and
64. Each hierarchy structuring heuristic was run on the same 100 randomly
chosen problems, and the results averaged. As can be seen, the action-based
hierarchy (ABH) consistently outperforms the decision tree (DT). The results
were produced by taking the average performance of hierarchies up to the
maximum time taken by either method to diagnose a fault node; deadline
distributions were not taken into account in this set of experiments. It should
be noted that a baseline of 0.5 rather than 0.0 is used. Since the values of
actions are randomly chosen in the interval [0,1], it is rare for an action to
have average value much less than 0.5 over a group of faults.

63




In this set of experiments, the costs of tests were uniformly assigned to
be in the interval [0,1]. A couple of observations can be made: first, the
relative advantage of using action-based hierarchies seems to increase as the
problem size gets larger. Second, although action-based hierarchies give a
consistently better performance than decision trees, the advantage is not
dramatic. The first observation can perhaps be explained by the fact that there
are only so many ways to structure a small hierarchy, and there is a high

likelihood that purely by chance the decision tree will look much like the
. action-based hierarchy, and hence there will be no difference in
performance. The second observation is likely caused by the fact that we are
averaging over all possible values of the deadline. Action-based hierarchies
will offer the greatest advantage for intermediate values of the deadline--
something we will examine in more detail below.

The next set of experiments looks at how decision trees and action-based
hierarchies fare when compared to hierarchies that are simply constructed
randomly (all the tests that help in diagnosis are equally likely to be selected
at a given node). In this set of experiments, the costs of tests were all assumed
to be constant (equal to 1), which would

4
3
Mean Value
OfBest 2
Action
1
0
ABH DT ABH DT ABH DT ABH DT
8 16 32 64

Problem Size
Figure 2: Hierarchy Improvement vs. Random Structuring

tend to reduce the advantage of using action-based hierarchies. We compared
the percentage improvement of using action-based hierarchies relative to
random hierarchies versus the percentage improvement of using decision




trees relative to random hierarchies. The results are shown in Figure 2. Note
that although the percentage improvements tend to be small, action-based
hierarchies provide a vastly better improvement rate than do decision trees.
Increases in problem size appear to have little effect on the value of action-
based hierarchies, while decision trees seem to get somewhat worse as the
problem size increases.

Figure 3 shows the difference in performance, over time, of action-
based hierarchies, decision trees, and the randomly structured hierarchies.
This shows that action-based hierarchies always do at least as well as the other
approaches, no matter what the value of the deadline (the amount of resources
available for diagnosis), but that this advantage varies over time from nil at
time zero, to a maximum for deadline values of around 3 or 4, back to nil for
lérge deadline values. This corresponds, roughly speaking, to the fact that ail
hierarchies perform equally well at their root and their leaf nodes, but that at
the intermediate nodes there is an advantage for certain hierarchies over

others.
0.
Mean Value .
Of Best
Action g
0.
0.5 . L . . s
2 4 6 8 10
Deadline

Figure 3: Hierarchy Performance with
Different Deadlines and Heuristics

The reader may wonder why there are not certain time points at which
decision trees would have an advantage over action-based hierarchies. The
answer appears to be that in the profile of the performance of a single triple
of hierarchies (ABH, DT, Random) over a single fault, there likely would be an
advantage for decision trees at certain time points--namely those time points

65




where the decision tree has completed its diagnosis but the action-based
hierarchy has not done so. However, the numerical value of those time points
varies from one instance to another, and when we average out as shown in the
above diagram, there is no fixed value of the deadline where decision trees
have a consistent advantage. In the next chapter, there will be examples of
cases where the performance of decision trees is noticeably--although not
greatly--better than that of action-based hierarchies.

So far we have looked only at the advantage offered by action-based
hierarchies when we evaluate the performance based on partial results at
intermediate nodes. Suppose that the only thing that counts is getting to a leaf
node as quickly as possible. Here, we can define another evaluation criterion
different from the one defined in chapter 2. This evaluation criterion, known
as the leaf-node evaluation criterion, computes the probability that a leaf node
will be reached by a certain value of the deadline. This criterion may be
computed as the weighted average of its value for each fault:

Vi(t) = Y V(£ A
feF

The value for a given fault may be defined by starting at the root node and

time zero:
VI(£0) = VI(£,t,R,0)

and the value for a node n=<(taF;> may be computed recursively: in the
case where Fp, = {1},

Vi(f,t,n,E) = 1 for t=E
and in all ot'her cases assume there are k outcomes of the test t, {o], 02, ..., 0 kb
such that feo;. Then if the corresponding children nodes are njfor 1 <i<k,

we get
Vi(f,t,n,E) = 0 for E< t< E+((t)
K
ViEtnB = 53 vt n, B o) for £2 E+ (o)
|

In this case, we would expect decision trees to outperform action-based
hierarchies because this is the problem that decision trees are designed to
solve. The question is, by how much will they outperform action-based
hierarchies? In Figure 4, we show a graph of the probability of success versus
deadline. By this we mean the probability that a leaf node has been diagnosed
by the deadline. Looking at this figure it is apparent that over a relatively
small range of the deadline (between about 4 and 7) using a decision tree




offers a very significant advantage over the other approaches. However, for
other values of the deadline, it makes very little difference. We can conclude
from this that if diagnosing down to a leaf node is especially important and if
we expect an intermediate value for the deadline, it would be better to use
decision tree structuring. In all other cases, it would seem better to use action-

based hierarchies.

0.8}

Mean Value 0.6}

Of Best
Action 0.4}
0.2}
0

Deadline

Figure 4: Hierarchy Performance using
All-or-Nothing Evaluation

Section 6.4 -- Experiments with Deadline Distributions

The previous set of experiments ignored deadline distributions. We next run a
set of experiments with deadline distributions taken into account. The
hypothesis we wish to test is the following:

e Using the deadline distribution heuristic described in Chapter 3 will
provide a better performing hierarchy than either of the regular action-
based or information-theoretic heuristics, as well as better than the
random heuristic.

The experiment specifications for this set of experiments is the same as for the

previous set, except that now we need to specify deadline distributions instead
of ignoring them. First, we define the expected complete diagnosis time as the

67




average cost of a test multiplied by the average depth of the hierarchy; that is
if the number of faults is n, then this number is
C(t) logy n

Now each fault was randomly assigned to have one of nine possible deadline
distributions: uniform distribution with the minimum O and the maximum
either 0.5, 1.0, or 2.0 times the expected complete diagnosis time; exponential
decay with a half life either 0.5, 1.0, or 2.0 times the expected complete
diagnosis time; or the deadline is known in advance to be exactly 0.5, 1.0, or 2.0
times the expected complete diagnosis time.

ABH

0.9

Valueof 0.8 Deadline
Best Action Distribution 54}

ToDate ¢ 7 ‘

0.6

Random
0.5
0.1 0.2 0.3 0.4 0.5

Deadline

Figure 5: Hierarchy Performance with
Non-trivial Deadline Distributions

The results are shown in Figure 5. The results may be a little surprising. First,
as before action-based hierarchies are substantially better than decision trees
or random structuring. However, there was no appreciable difference
between structuring taking deadline distributions into account versus not
taking them into account. A clue to the answer lies in the fact that the
difference between action-based hierarchies and decision trees was much
greater than in previous examples. The reason for this was that there are 64
tests, and costs of tests were allowed to range uniformly between 0 and 1 in this
set of experiments. Hence, there were enough low cost tests to allow diagnosis
to be completed very quickly when costs are taken into account, but
conversely when costs are not taken into account, diagnosis is much slower.
The deadline distributions were computed by taking an average test time of 0.5




and 6 tests to do complete diagnosis, for an average diagnosis time of 3.0;
hence significant changes in deadline distribution do not occur until half this
or 1.5 time units out.

In other words the deadline distributions turned out to be too long for
this set of experiments for us to see any significant effect. One may wonder
what the point is in giving this result at all. It is an interesting result in the
sense that it shows that even in cases where deadline distributions do not have
a significant bearing on the final result, taking them into account does not
worsen hierarchy performance in any way. Thus, it would be an interesting
topic for further research to determine whether deadline distributions
significantly affect hierarchy structuring under any circumstances and if so
under what circumstances, taking into account the analysis of the previous
paragraph. All experiments that were run, however, showed similar results to
those shown in Figure 5.

It does not follow that deadline distributions are an unimportant part of
the analysis. Indeed, deadline distributions are essential to the process of test
promotion, and the next section will show that test promotion can lead to a

significant improvement in hierarchy performance.

Section 6.5 -- Experiments with Test Promotion

In the next set of experiments, we look at the relative performance of
hierarchies when physical costs of tests are taken into account and tests are
potentially promoted to higher level nodes in the hierarchy. Specifically, we
ran the same set of experiments as previously, but with each test assigned a
physical cost of 0.02 as well. Also, the definition of performance of the
hierarchy changes somewhat when we take into account physical costs of
tests, because now it is necessary to subtract the cost of all tests performed to
date from the value of the hierarchy, as described in chapter 2. As before, the
deadline distribution heuristic was used before doing test promotion, on the
basis of the fact that it is impossible to do test promotion without deadline
distribution. The results of this set of experiments is shown in Figure 6.

The results show that for intermediate values of the deadline, it is better
to use test promotion. For short values of the deadline, the large number of
initial tests requested by the test promotion algorithm results in a net loss in
values, since many of those tests will not have come back in time to be useful.

69




For long values of the deadline, it would have been more efficient to perform
fewer tests, because there was sufficient time for them to come back, so the
unnecessary tests result in a greater cost. It is for the intermediate values of
the deadline that one can observe a significantly better performance by using

test promotion.

Test Promotion

Value Of 0.8
Best Action

to Date 0.7 ABH

DT
N
0.6 /

Random

0.2 0.4 0.6 0.8
Deadline

Figure 6: Hierarchy Performance with
Test Promotion

This should not be construed to mean that the user of the reactive
planner has to estimate whether the deadlines are likely to be intermediate in
value, and only do test promotion in this case. As long as the deadline
distribution values are reasonable, this is handled automatically. The reactive
planner will converge on a hierarchy that behaves similarly to the one given
above only if it is more beneficial to perform well for intermediate values of
the deadline than it is costly to perform not as well for the large and small
values of the deadline.

70




Chapter 7
Domain Experiments

The experiments described in chapter 6 were successful as far as they went.
They provided a good preliminary validation of the approach of using action-
based hierarchies as opposed to decision trees or randomly structured
hierarchies, as well as the increased benefits that can be realized by taking
deadline distributions and test promotion into account. As such, they
significantly extended the scope of the theoretical analysis, which was
extremely limited in that it required very strict assumptions in order to be
provably optimal. However, to date the approach has been completely in the
abstract--in this chapter we apply the approach to a real-World problem to
show that similar results can be realized in such a problem.

The first part of this chapter will describe the domain of application--
surgical intensive care unit patient monitoring--and then results from
applying the approach to this problem will be presented. These results, while
encouraging, will not be subject to the same statistical validation that the
results in chapter 6 were subject to because there will be essentially only one
hierarchy generated. In the second part of this chapter, we will analyze the
problem to determine how it differs from the abstract problems that were
solved in chapter 6, and then we will run further experiments on abstract
problems with the same general structure as the medical problem. The
purpose of this additional set of experiments is to ensure that there is neither
anything in particular about the domain, nor about the distributions of
variables used to run the experiments of chapter 6, that resulted in the

encouraging results.

Section 7.1 -- Intensive Care Unit Patient Monitoring

The domain to which these ideas are applied is that of monitoring a patient in
an intensive care unit (ICU). A patient in the ICU typically has multiple organ
failure and is placed on a ventilator to assist with breathing. Because of this,
there can be many problems that might arise that require fast response; this
domain is attractive because of the need to provide such response, and because

71




there are often several different responses available of differing specificity
that can be undertaken given a differential diagnosis of different sizes.

The areas requiring immediate response can be broadly categorized into
three areas: anemic hypoxia problems which generally require a transfusion
of some type; oligemic hypoXia problems which may require the immediate
invocation of an ACLS (advanced cardiac life support) algorithm or treatment
of the underlying cause if more time is available; and oligemic hypoxia
problems generally requiring either some tweaking of the ventilator settings
or treatment of the underlying cause of the problem. Corrective actions in
this domain can be of several types: they can buy a medical practitioner time
in order to diagnose the real underlying problem; they can be effective but
not necessarily definitive for a wide range of problems; or they can represent
the definitive therapy for a particular fault. Because the structuring
algorithm requires a particular number for the value of each action, a medical
domain expert provided a heuristic estimate of the numerical value of each
action for each fault on a scale of 0.0 to 1.0. In general, definitive therapies
were assigned a value of 1.0; therapies valid for a wide range of problems
were assigned somewhat lower values ranging from perhaps 0.5 to 0.85;
therapies that merely buy time were assigned values that were lower still--
usually under 0.5.

The tests available in this domain tended to fit into two large categories-
-lab tests that require an average of 20-30 minutes to come back--and
monitoring actions involving checking parameters--these could be completed
in under a minute. There is also a third type of test that requires the insertion
of a monitoring device such as a Swan catheter. To make an initial
measurement of the value of such a parameter is therefore quite expensive,
but additional measurements then become quite inexpensive. The therapist
must therefore take into account both the initial cost and the possible future
benefit in deciding whether to perform such a test.

The actual tests in this domain require a minimum of computational
complexity to be analyzed; this is not a limitation on the action-based
hierarchy approach but rather is an artifact of this particular domain.

Many of the inputs for structuring the algorithm will depend on the
type of patient in the ICU. For the purposes of illustration, the values used in

this demonstration were given by a domain expert based on a typical patient at

72




the Palo Alto Veteran's Administration hospital--a 67-year-old male who had
just undergone coronary artery bypass graft (CABG) surgery.

Various medical domains have been typical vehicles for applying Al
ideas over the years. For example, the KARDIO system [BR87] precompiles ECG
descriptions based -on model-based reasoning, which it uses to classify
arrhythmias at runtime. This represents a solution to half the problem that is
solved in this thesis; we precompile solutions but also can make tradeoffs at
run-time in cases where a complete diagnosis is impossible. This appears to be
impossible in KARDIO. Another system, VM [FA80], is similar to the present
work in that it is a real-time medical Al system, but it handled real time in a
different manner than here. In particular, it was concerned with the
complexity of reasoning algorithms and with when data values became stale
over time, but not with deadlines. Therefore, it was unable to make the
necessary tradeoffs that a system using action-based hierarchies can.
Another medical system, TraumAID [CL89] was able to handle incomplete data,
but the notion of meeting a deadline is missing.

Specific to the problem of intensive care unit patient monitoring, there
is a fairly wide body of literature. Factor and colleagues [FA90] developed an
architecture known as the process trellis and applied it to the problem of ICU
patient monitoring. The process trellis consists of a graph of decision
processes which execute in parallel; it has the ability to provide parallelism
even when knowledge acquisition is done by domain experts with little
knowledge of parallelism. Although the ability to do parallel processing would
seem to be a major advantage to this approach, the fact that the processes
modeled all directly correspond physiologically to the domain restricts its
usefulness in responding to deadlines. Response on deadline requires a
component that knows specifically about deadlines and not necessérily about
specific organ systems.

An ICU patient monitoring system with a strongly decision theoretic
component is VentPlan ([RL93], [RL91]). The idea here is to select a decision-
theoretic model of physician preferences that effectively trades off
complexity and accuracy. This is a different tradeoff than the one made by
action-based hierarchies, which trades off time for specificity. Still, it would
be interesting to compare the two approaches to see which yields the better
results. It appears plausible that action-based hierarchies would perform

better in cases where incomplete information is available, while conversely

73



VentPlan would perform better when complete information is available but
time is short.

EINTHOVEN [WI91] is another ICU monitoring system devoted chiefly to
the interpretation of ECGs. As such it attacks a different subproblem of the ICU
problem than the one discussed in this thesis. Other ICU monitoring systems
include WEANPRO [T091], SIMON [UC93], and the work of King and colleagues at
Vanderbilt [XU92].

Section 7.2 -- Analysis of the Domain

In order to make the experiments of chapter 6 more realistically reflect the
medical domain, we first analyzed the medical problem on a number of
dimensions to compare its properties to the abstract distributions we used in

the previous experiments.
7.2.1 Prior Probabilities of the Faults

In the chapter 6 experiments the prior probabilities for a set of n faults were
selected by selecting a uniform distribution for the n-1 partitions between the
faults. This results in the standard deviation for the prior probabilities of the

faults being

This means that the expected standard deviation for the 58 faults in the medical
KB is 0.01695. For comparison purposes, the actually observed standard
deviation of the fault priors is 0.01536. So in the case of prior probabilities,
there does not appear to be much difference between the distribution observed
in the medical problem and the distribution used in the experiments.
Therefore, in redesigning the experiments, we made no changes in the

distribution for fault probabilities.

74




7.2.2 Values of Actions for Faults

In the experiments, the value of the actions for each fault is uniformly
distributed on the interval [0,1]. In order to analyze the distribution of the

.. . . ii+l
values for a given action, we divide this interval up into k subintervals [E,-k—)

and assign the number 1 to the last subinterval. We look at how many of the
faults fall into each of these subintervals. We would expect, in the theoretical
experiments, that the distribution of the number of faults in each interval

. . n .
would be Poisson, with mean X where n is the number of faults. Hence we

e n .
would expect a standard deviation of \/ X In the actual domain, we have n =

58, and in analyzing we use k = 10, so we would expect the standard deviation to
be 2.408. In the actual domain, the standard deviation averages 17.142 whereas
the maximum possible standard deviation would be 17.4. What we are
observing here is illustrated in Figure 7.1. The left hand side of the figure
shows, for a typical action, the type of distribution of the values of the action
for the 58 faults that would be observed if the values were assigned randomly.
The right hand side shows what actually happens in the domain. In the
domain, there tend to be many faults for which a given action has value 0, and
a much smaller number for which it has value 1. For some actions, of course,
there will be intermediate values as well, but we see here is fairly typical. In
other words, the standard deviation is about as high as it can possibly be,
which is what we observed in computing its value.

We will observe a similar result if we compute the mean, over all faults
and actions, of the values. We would expect in the experimental domain that
this mean would be 0.5. In actuality, the mean is 0.01108. Thus, the average
value of actions is far below that which occurs in the experiments.

7.2.3 Costs of Tests

In the experiments, the costs of tests is uniformly distributed. In the actual
medical domain, it appears that the costs of tests is less uniformly distributed.
There are only a few different values (e.g. 1 min, 5 min, 20 min, 30 min) that it
ever attains, and these values are clearly not uniformly distributed in the

interval from O - 30 min.

75




(4] €0

ab 0
4 » 40
Number Number -
of Faults i of Faults
2D 20
1D 10 .
L T°TT 11 1 11 TR -
00 0.3 06 09 0.0 0.3 0.6 09
Random Distribution Typical Medical

Distribution

Figure 7.1: Distribution of Action-Fault Values:
Random vs. Domain

7.2.4 How Tests Divide up the Fault Set

In the experiments, each test divides the fault set exactly in half, and the two
sets are disjoint (all tests are binary). In the actual domain, we observe that

the tests split up the domain in the following way:

Outcomes Num. Tests Average Size of
Outcomes
2 27 54.59 47.89
-3 3 57.00 57.00 56.00
4 10 56.00 53.00 52.50 51.50
5 2 54.50 53.00 51.00 50.50
49.50

76




6 1 56.00 54.00 53.00 53.00
53.00 52.00

8 1 51.00 50.00 46.00 45.00
44.00 43.00 39.00 38.00

17 1 50.00 49.00 41.00 41.00

41.00 41.00 41.00 41.00

40.00 40.00 40.00 40.00

40.00 40.00 40.00 39.00
38.00

What the numbers in this table signify are best shown by example. In the
first line of the table, we see that there are 27 tests with 2 outcomes (the first
set of experiments assumed all tests were binary). For each of those 27 tests,
there will therefore be 2 associated subsets of the set of all faults
corresponding to each of the 2 outcomes. The larger such subset has, on
average, 54.59 faults, and the smaller has on average 47.89 faults (out of a total
fault set of 58 faults).

One thing we can conclude from this table is that the tests tend to have
more outcomes than in the domain experiments, and they tend to be less
discriminating (they reveal less information about the correct fault). A
realistic set of experiments would therefore have to incorporate this feature.

Section 7.3 -- Experiments in the Domain

The hierarchy structuring algorithm was run, with both action-based and
information-theoretic heuristics, on the medical problem outlined in section
7.1. Although referred to as experiments to match the terminology used
elsewhere in this thesis, this aspect of the work really amounts to a complete
analysis of the approach as it applies to this problem. The reason is that it is
quite easy, computationally, to measure the performance of the hierarchies
generated on each of the 58 faults individually, and then weight the
performance on the basis of the prior probabilities of the faults. Of course, the




fact that this complete analysis is possible does not mean that there is no
uncertainty in the domain, so in that sense we are solving a simplified version
of the actual problem with the action-based hierarchies or information-
theoretic hierarchies. However, given this simplified approximation to the
real problem, a complete analysis of the value of a particular hierarchy is
possible, and that is what we have done with the experiments.

The basic assumption that is made in moving from the actual problem to
the simplified problem is that the various inputs to the hierarchy structuring
algorithm are fixed and known in advance. For example, a given test is
assumed to come back from the lab in a fixed amount of time; in the actual
domain the time would be uncertain and known only to have a certain
approximate mean. Similar comments may be made about the other inputs to
the hierarchy structuring algorithm.

It should also be remembered that the goal of this research is to
compare different possible approaches to the same general problem of
reacting when faced with limited resources and only basic associative
knowledge about the domain. Other approaches such as model-based
reasoning (handling first-principles domain knowledge better) or belief
networks (handling uncertainty better) might perform better in certain cases
especially when the agent has greater resources with which to complete its
diagnosis and has the necessary domain knowledge. It is not the goal of the
present research to make this comparison, although it would definitely be an
interesting topic for further research.

Figure 7.2 shows a small part of the action-based hierarchy generated
for this particula{r domain. In this figure, the leaf nodes are shown with the
specific faults attached, and the higher level nodes have associated fault sets
that are the unions of the fault sets for all lower nodes. The associated actions
are indicated for all nodes. For example, at the top node of this subhierarchy,
the action of transfusing red blood cells conditionally was found by the
structuring algorithm to be a good action for all the lower nodes, and so is the
action of choice at that level. At a lower level, when the specific problem has
been diagnosed, it may be necessary to consider surgery, but only when more
information becomes available.

It should be remembered that the agent that uses this hierarchy is not a
planning system. For example, what is indicated above as the simple action of

"consider surgery" would translate to a plan that included performing a

78




transfusion and then performing surgery. The full details of actions are not
known to the hierarchy structuring algorithm because they are not of
interest to it. The action is given in the simple form of merely considering
surgery because at the level of reacting, the agent is not interested in the
details of an action but only in its value for given faults. What is of interest in
the above figure for the current research is that if sufficient time is available,
the agent will find the action of considering surgery, which, when executed
in its entirety, will be superior to merely performing a transfusion. But if
insufficient time is available, then the intermediate action of performing the

transfusion will be much better than doing nothing.

Action: Transfuse RBC Conditional

Test: HCT, Chest Tube Output, Radial MAP

_— | —

Fault: Upper GI Bleed Fault: Lower GI Bleed ||Action: Transfuse Platelets

Action: Consider Surgery|| Action: Consider Surgery Test: Platelets

Fault: Uncontrol. Vessel || Fault: Low Plt. Count

Action: Consider Surgery{| Action: Simple Pltlts.

Figure 7.2: Portion of Medical Action-Based Hierarchy

With regard to the experiments themselves, there were two experiments
run. Both compared the average value of the best action obtained, over all
possible faults, as a function of time--the corhparison was between the two
different structuring heuristics--action-based and information-theoretic. In
one experiment, the temporal cost of performing tests was not taken into
account, and in the other experiment, it was. The reason for performing both
experiments is that the classical decision trees do not take cost into account,
and it would be an obvious improvement to that approach to take cost into
account. Therefore, it is interesting to see how much of the improvement that

79




might be gained by using the action-based heuristic is due to the fact that cost
is taken into account, and how much is due to other factors.

Figure 7.3 shows the results of the experiment where test costs are not
considered. The x-axis is just the number of tests performed, since no
information about their costs is known to the hierarchy structuring
algorithm. As can be seen, there is a modest advantage of action-based
hierarchies for one and two tests, and with three tests there is a crossover
effect where decision trees are better. Whether this is due to a mere artifact of
the domain, or more because of the intrinsic advantage decision trees have

over longer time intervals, is hard to say with only one data point.

0.5
0.4+
‘ ABH
Valueof 0.3}
Best Action
toDate 0.2}
/:—»—/
0.1 =" DT
0

1 2 3
Number of Tests

Figure 7.3: Hierarchy Performance on Medical Problem
(no costs factored in)

Complete diagnosis takes longer than three tests, but for larger number
of tests, the results are not too interesting--the two types of hierarchy
structuring perform roughly equally. This fact tends to indicate that the
advantage enjoyed by decision trees for 3 tests is a mere artifact of the domain.

The interpretation that one can draw from this experiment is that for a
very small number of tests action-based hierarchies have an advantage over
decision trees even when costs are not taken into account. For larger numbers
of tests, they perform roughly equally, so this would give reason to prefer
action-based hierarchies even in a domain where all test costs are equal,

although the advantage would be small.




Figure 7.4 shows the same experiment run, but this time with the costs
of tests factored in. As can be seen, this time action-based hierarchies
perform much better than decision trees as the deadline increases. The
conclusion that should be drawn from this combination of results is that while
action-based hierarchies provide some advantage even without taking costs

into account, clearly the majority of the improvement seen in figure 7.4 is due

to factoring costs in.

0.8¢

Valueof 0.6
Best Action
toDate 9.4}

0.2

15 30 45 60
Deadline

Figure 7.4: Hierarchy Performance on Medical Problem
(costs factored in)

Section 7.4 -- Abstract Experiments with a Similar
Structure

We have designed and run a set of experiments to test the hypothesis that
action-based hierarchies provide a substantial improvement over decision
trees when used in a problem domain with randomly assigned priors, values,
costs, and tests, but that closely mimic the medical domain. Specifically, we
assigned these numbers randomly using the following distributions:

Priors: A uniform distribution such that the sum of the priors is equal to 1

was used. This is the same distribution as used in the original set of

experiments.

81




Values: The value of each action for each fault is independently assigned.
With 90% probability, it is uniformly assigned to the interval [0,0.1], and with
10% probablhty, it is uniformly assigned to the interval {0.9,1. 0].

Costs: Costs of each test were assigned independently. With 50% probability,
tests were assigned to have the value 0.1667, and with 50% probability they
were assigned to have the value 1.0000.

Tests: Each test was randomly assigned to have a certain number of outcomes,
with each possible number of outcomes from 2 - 17 being assigned with the
frequency that it occurs in the above table. Then, based upon the total
number of faults, the number of faults in each outcome were assigned based
upon the above table, subject to the condition that the maximum number of
faults per outcome of a test is at least one less than the total number of faults.
Finally, specific faults were assigned to each outcome of the test, subject to the
condition that the union of the fault sets for all outcomes of a test must be the

set of all faults.

As before, the experiments were run for problem sizes of 8, 16, 32, and 64
faultsv, test and action sets. However, it was computationally expensive to run
the experiments and generate complete hierarchies, especially for the larger
problem sizes. Therefore, we picked a fault at random and then randomly
assigned outcomes to the tests that were consistent with this fault being
present. We evaluated performance of the hierarchy solely on this fault for
this set of outcomes; to do so did not require construction of the entire
hierarchy. We repeated this process 100 times for different assignments of
priors, values, costs, and tests. Because this approach is, in effect, 100
different simulations of the performance of 100 different generated

hierarchies, it will be statistically valid.
7.4.1 Experimental Results

Figure 7.5 shows the results of this set of experiments. The results
shown are what we would expect--action-based hierarchies perform better
than decision trees, and decision trees perform better than random. The other
expected result is that it takes a great many tests to get a complete diagnosis.
Since there is so little information content in each test, this is probably to be

expected. Most outcomes of most tests include the vast majority of faults. Still,

K2




this does not seem to capture the medical problem fully, so further
investigation of this point is needed, as well as possible design of further

experiments.

()}

Mean Value 0.
of
Best Action ¢ 4}

Random

S 10 15 20 25 30
Time Elapsed

Figure 7.5: Hierarchy Performance
(64 faults)
Parameter values similar to medical domain

It also appears that a problem size of at least 64 faults is necessary
before there is a significant difference between the different approaches to
hierarchy structuring. The following figure shows the hierarchy
performance for the 32-fault problem. As can be seen, similar effects to the 64
fault case are observed, but they are not significant with only 32 faults.

The biggest caution that must be added to the results of this set of
experiments is that it is clear that only certain aspects of the domain have
been captured in the analysis that led to the specifications of the experiments,
and it is perhaps difficult to see how to modify the specifications to avoid this
problem. In particular, the high computational complexity that was
mentioned above with this set of abstract experiments occurs because none of
the tests has much discriminating power among faults; hence a vast number
of nodes is created. In the domain, this difficulty does not arise and the
number of nodes remains manageable. The reason is that although on average
tests in the domain have little discriminating power, there are a few tests that
do have high discriminating power, and those tests tend to be performed at the
high levels of the hierarchy.

83




0.8}

Mean Value 0.6}
of
Best Action ¢ 4/

0.2}

Random

4 8 12 16
Time Elapsed

Figure 7.6: Hierarchy Performance
(32 faults)
Parameter values similar to medical domain

However, this set of experiments does provide evidence that the
approach is robust in the face of very different types of inputs. Coupled with
the other experimental results, it provides a fairly strong endorsement of the
approach.




Chapter 8
Implementation

In a certain sense, the rest of this thesis stands on its own without the need to
discuss any implémentations of the ideas. That is, one could use these ideas to
build a reactive planner and an agent that would be able to respond in real
time to faults even when complete diagnosis is impossible.

However, the ideas have been implemented in a running system, known
as ReAct, and there are a couple of good reasons to include a discussion of this
system in the thesis. The first reason is that a number of issues come up in the
implementation of a system that do not come up in its design or in the analysis
and experiments. A discussion of the implementation provides a good
framework for leading into a discussion of these issues. Because the
implementation is not the central point of this work, there is no claim being
made here that the choices that were made in doing the implementation were
optimal. However, by presenting the issues that arose and possible
alternatives, the reader will better be able to make reasonable choices in
applying the ideas.

The second reason for discussing the implementation is that it provides
a framework for describing an example of a reactive plan in action. The
nature of the analysis so far has made it impossible to see this, because the
experiments presented overall average performances of the entire hierarchy.

The implemented system is known as ReAct. It consists of two parts--the
reactive planner and the necessary knowledge sources to execute the reactive
plan. The reactive planner is written in Lisp; the reactive plan is written in
the BB1 blackboard architecture [HR85]. ReAct is part of the Guardian
intensive-care unit patient monitoring system [HR92]. It is not, however, the
whole of Guardian and is intended only to provide a response when the
available more compute-intensive methods, such as the planner [WA90] and
model-based reasoner [HE89] do not have sufficient computational resources to
complete their tasks. v

Like the other parts of Guardian and any system implemented in BB1,
ReAct comprises a set of knowledge sources (KSes) each of which has expertise
at performing a part of its task. When certain conditions are met, a KS is
instantiated to produce a knowledge source activation record (KSAR). A
control plan is used to determine which KSAR to execute next. The process of

85




deciding which KSAR to execute next and executing it is referred to as a BBI
cycle.

This decoupling of the reactive planning phase (as a Lisp function) and
the plan execution phase (in BB1) permits two different modes for the use of
ReAct. First, the hierarchy structuring algorithm (forming the basis of the
reactive planner) may be used and the resulting action-based hierarchy used
in BB1 to provide real-time performance. However, it is also possible that a
domain expert may feel that the basic framework is an acceptable one but that
he/she can provide an action-based hierarchy by hand that will be more
effective than the generated one. Hence, ReAct allows this possibility by
simply allowing a knowledge base to be built up that is used directly in BB1.

Both the reactive planner and the plan execution phase are designed to
be domain independent. That is, although the overall system (Guardian) is
geared toward a specific domain (intensive care unit patient monitoring) both
parts of ReAct could be used as part of a system in any domain. The inputs to
the hierarchy structuring algorithm are the only thing that is domain
dependent.

There is no direct mechanism allowing for dynamic replanning where
new reactive plans could be constructed based on changing conditions in real
time. However, ReAct allows more than one action-based hierarchy to be in
existence at any one time. Hence, these multiple action-based hierarchies
could be created by a BB1 knowledge source outside of ReAct. Furthermore, it
is not necessary that all action-based hierarchies in existence be active at any
one time, so other knowledge sources (outside ReAct) could also change the set
of action-based hierarchies that are active at any one time. Thus, dynamic
replanning can be accomplished by having another knowledge source run
the hierarchy structuring Lisp routine and making active the resulting
action-based hierarchy.

ReAct is intended to be closely coupled to another system designed by
Dabija [DA94]. Dabija proposes that the set of faults (or contingencies) that the
system can respond to‘depend on a number of factors such as the urgency
(either too urgent or not urgent enough provides reason not to react),
consequences and side effects of acting, and others. The intent therefore is
that Dabija's algorithm be run first and the resulting set of faults be used as an
input to the hierarchy structuring algorithm. This also provides a framework
for doing dynamic replanning, since if the circumstances change such that

86




the set of faults to which the system should be responding change, then it is
necessary to generate another action-based hierarchy.

Because ReAct is running as part of a larger system and not as a
separate entity unto itself, some issues that otherwise would not need to be
confronted need to be addressed. For example, although the hierarchy
structuring framework provides for tests to be performed at a particular time,
it is entirely possible that another part of the system may perform one of these
tests out of the sequence that ReAct is expecting it to be performed in. One way
this may happen is that certain parameter values may be monitored on a
regular basis, and if these parameters correspond to particular tests in the
system, then this amounts to the performing of certain tests on a regular basis.
In fact, a particular subsystem, Focus, is concerned with just this issue--how
frequently should parameter values be monitored and sent to the agent
[WA89]? A related issue is when a search of the hierarchy should be initiated.
The entire analysis assumes that it simply happens at time 0--so the question is
how one vdefines time 0. The definition given earlier in this thesis states that
time O is when evidence is first noticed about a problem or fault. Although
this is reasonable, it tends to assume that only a single instance of ReAct will
be run. Clearly this is inappropriate in general so the issue becomes one of
deciding when to instantiate ReAct to run on another problem.

Another issue that arises is a larger version of the dynamic replanning
problem. If dynamic replanning is to be done, it means that the inputs to the
hierarchy structuring algorithm may change from time to time. The problem
being addressed by this thesis does not concern itself with how these inputs
change. As was mentioned above, Dabija concerns himself with how a
particular input to the algorithm--the set of faults to be responded to--changes
in real time. Someone wishing to use this system and do dynamic replanning
needs to consider the question of how all inputs to the algorithm might change
over time, and if so, how they are likely to change.

Appendix B gives a complete programming manual for the
implementation; what follows in this chapter is not intended to be a
programming manual but rather a description of how the more interesting
aspects of the implementation affect the developer of a real-time Al system
using ReAct as a component part.

87




Section 8.1 -- ReAct Knowledge Sources

ReAct uses a set of five knowledge sources to provide response in real time.
These are illustrated in Figure 1. In this figure small hierarchies are used to
indicate the transformation on the hierarchy that each KS effects. The first
thing to notice is that in this implementation there is a concept of belief in
each particular node in the hierarchy, indicated by the amount of black
shading in the diagrams. This is not a concept that has any meaning in the
theoretical framework. However, because of the property mentioned above
that the test outcome associated with a particular node may be noticed without
the test being explicitly requested by ReAct, it is necessary to have a notion of
belief in this implementation.

Simple 3-node action Shaded area indicates node Oval indicates current
based hierarchy has 75% probability of being true best hypothesis

g

Incorporate Evidence Recognize Problem

LY

Propagate Evidence Down Hierarchy

v

Take Action

Figure 1: ReAct Knowledge Sources

Following is a description of the meanings of each of these five knowledge
sources:

88




Incorporate Evidence: This knowledge source causes the belief in a node
in the hierarchy to change on the basis of a test outcome. Tests in ReAct are
represented as a set of parameters whose values need to be obtained together
with a fuzzy pattern describing the particular values of those parameters that
give particular outcomes to the test. Note that it is not necessarily the case that
the patterns representing the particular outcomes to the test are mutually
exclusive. It follows that ReAct will be capable of diagnosing multiple faults
using this system.

The patterns thémselves are represented using the formalism associated
with the fuzzy pattern recognizer (FPR) developed by Drakopoulos [DR91].
This pattern recognizer produces a level of belief in each outcome of each test,
provided that all associated parameter values are available. The level of belief
proposed By Drakopoulos is a possibility measure and not a probability
measure, which results in it having some interesting properties. From the
point of view of ReAct, the possibility measure must be reduced to a single bit
representing either the outcome is present or it is not present. This will be
discussed in more detail below.

In the current implementation, the patterns are non-temporal--they
depend only on the current value of the parameters. However, it is possible to
envision patterns that depend on the value of parameters as they vary over
time. Hence, although at present the computational cost of evaluating a
pattern is trivial, when the temporal variation in parameter values is added,
giving a new fuzzy pattern recognizer t-FPR, the computational costs may no

longer be trivial.

Recognize Problem: To understand the meaning of this KS, it is first
necessary to understand what is meant by a "problem" in ReAct. If ReAct were
to be used only once during any given run of the system, and were to diagnose
but a single fault, then there would be no need to distinguish among different
problems that ReAct might be working on. However, this is not necessarily
the case. It may be that ReAct solves a problem, but later on another problem
arises that requires ReAct's attention. Or it may be the case that ReAct is
working on a problem, but recognizes that there is more than one fault
associated with the problem and decides to split its search of the hierarchy
into multiple sub-problems.

89




It is because of possible issues like this arising that the notion of a
"problem" developed. A problem represents a single search through an
action-based hierarchy, together with the history of the node believed to be
the current best hypothesis at different points in the search. To this end, the
Recognize Problem KS is triggered whenever there is a sufficiently high
probability increase in the belief of any node in the hierarchy that is not in a
part of the hierarchy covered by any existing problem that ReAct is working
on. The effect of Recognize Problem is to set the reactive plan in motion.

A corollary of this is that to initiate a reactive plan in this
implementation, it is necessary for there to be some means of updating belief
in a node in the hierarchy without an explicit request of a test by ReAct. In
this domain, it was found that the tests associated with the high level nodes in
the hierarchy were, in essence, performed by Focus frequently enough that
this was an effective means of initiating the ReAct diagnosis process.
However, in another domain this might not be an effective means of initiating

ReAct, and some other means would need to be found.

Propagate Evidence: Because it is not necessarily the case that evidence
comes back to ReAct in the exact order that tests are requested (for the reasons
given above) the Propagate Evidence KS is needed. The idea here is that
evidence in favor of a low level node in the hierarchy may also be evidence in
favor of its ancestors. The issue here is somewhat tricky, however. Evidence
in favor of a low level node may simply mean that in the presence of
additional evidence confirming the parent node, then this node should be
activated; in may not mean anything in and of itself. It is necessary to look at
the outcomes to the specific tests. If the outcome for a specific test at a specific
node is a subset of the outcomes for ancestor nodes, then propagation of
evidence should occur. Otherwise it clearly should not.

Down Hierarchy: This KS moves the current best hypothesis from a parent
node to a child node. This should be done whenever the level of belief in the
child node is sufficiently high that one would be willing to take action on the
assurhption that the child node is in fact present. It is an interesting question
how high it is necessary for the belief level to be in order to make this
determination. One possibility is to simply use a "magic number" such that a
level of belief higher than some fixed threshold, say 0.65 (they range from O to

0




1) is sufficiently high to warrant action. This approach actually stands a
reasonable chance of working if the question put to a domain expert when
constructing the outcomes of tests is not "which outcomes would cause you to
believe that this outcome is present?" but rather "which outcomes would cause
you to act as though this outcome is present?” Then the possibility measure
produced by FPR becomes a measure of the willingness to act, and it is
reasonable that there should be a single magic number that would work.

This is the approach that has been taken in the current
implementation, and it has been found to be reasonable. However, this is not a
property of any particular magic number, but rather that for the particular
patterns used, belief measures tend to be either very close to O or very close to
1 (there isn't all that much fuzziness in the fuzzy patterns that are actually
being used). In other words, the work of disambiguating the semantics of the
outcomes of tests has already been done, and any magic number between 0 and
1 would work except for those numbers very close to either O or 1. Other
approaches based more on the ability to reason under uncertainty could also
be taken, but these other approaches would still need to be based on the
semantics that moving down the hierarchy signifies a willingness to act.
Given such an approach, it would be interesting to run experiments in which
the threshold is varied to determine how the results change with a variance in
the threshold.

The fact that the current best hypothesis is moved down the hierarchy
does not mean that there may not be faults that are descendants of sibling
nodes that are also present. If this possibility is present, this KS will split off

another search of the hierarchy and create a new problem in doing so.

Take Action: Corrective action must be taken when the soft deadline is
reached. The question is how one recognizes that a soft deadline has been
reached. In the present implementation, this is done by having a soft deadline
associated with each fault in the hierarchy, and then setting the deadline for
higher level nodes to be the minimum of the deadlines for the descendants.
This is clearly a cruder approach than is desirable. For one thing, it can at
best approximate the more complex notions of deadline distribution that are
used in the analysis needed to construct the hierarchy.

Therefore, a desirable topic of future research would be one of
recognizing when a deadline has been reached based on parameter values or

91




other inputs. It is an assumption of the approach that the agent has a means
of doing this, and its current methodology can be at best represent an
approximation to this assumption.

Section 8.2 -- Sample ReAct Run

In Figure 2 is illustrated an simple example of a ReAct run.

4. Coag Factor Deficit Diagnosed

1.0 — Tests Requested
2. Post Surg Bleed Diagnosed
Tests Requested
action of
value of 3.PT comes | transfuse
:‘e,zzlaa;tll:n 1. High Chest Tube Output back FEP 5. take af:tion
ReAct triggered at deadline
0.5 — —continue
diagnosis
action of transfuse FFP available | f
ReAct compute time
0.0 —
i e
0:00 ReAct compute time 20:|00 deadline 40}00
Run Time

Figure 2: Sample ReAct Run

In this example the first parameter value noticed, high Chest Tube Output at
step 1, is noticed outside the scope of ReAct itself (this is a requirement of this
particular implementation, as mentioned earlier in this chapter). Because the
agent is not working exclusively on ReAct KSes, some time elapses before the
agent is able to make a refinement of the current best hypothesis, in this case
diagnosing Post Surgical Bleed. Note that the agent has been able to bypass
intermediate nodes in the hierarchy because this is an example of where the
outcome to a test that points to a lower node also has bearing on higher level
nodes, and hence it is not necessary to wait for the outcomes of those tests. The
diagnosis of Post Surgical Bleed is made at step 2. The next test, a request of PT
(prothrombin time) is made and comes back at step 3. Again, the agent is not
exclusively working on ReAct related KSes, so some time elapses before a

92




refined diagnosis of Coagulation Factor Deficit is made at step 4. Further tests

are requested.

However, the deadline is reached at step 5, and at this point an action--
transfusing fresh frozen plasma (FFP) is recommended. This does not
represent the completion of the run, but further diagnosis is not shown in this
diagram. Even when a deadline is reached, ReAct always continues to attempt
diagnosis down to the leaf nodes of the hierarchy after recommending the

action required at the deadline.

93




Chapter 9
Conclusions and Future Work

This thesis has illustrated both the strengths and limitations of the action-
based hierarchy approach. The greatest strength of the approach is that no
possible competing approach to the problem previously described in the
literature is as effective at solving the problem as the action-based hierarchy
approach. Many of the other technologies described in the literature do not
address the problem addressed by this research; their primary drawback is
that they are not simultaneously capable of providing response in real time
and making the planning time/real time tradeoff so essential to this approach.
The one technology that can be applied to this problem--decision trees--
proves to be an effective approach, but capable of being made more so by a
number of refinements which have been described in detail in this research.

The work provides an important contribution to the field in several
ways. It represents an improvement on existing diagnosis work in that this
work either addresses diagnosis but not from the point of view of real time
constraints ([RE87], [DE87], many others), or addresses complexity issues
without the specific notion of meeting a real time deadline ([CO90] and some
others). With regard to existing reactive planning systems, this approach
takes us beyond the limitations of having to come up with a response within a
single cycle or not at all ([KA87] and others). Existing anytime systems assume
deliberation (deciding what to do next) and action (doing it) are interleaved at
run time ([DB88], [RU91] and others)--this approach requires that all
deliberation take place at planning time. As will be discussed further below, it
would be interesting to examine further the limitations and advantages this
approach may offer. Existing attribute selection approaches to decision tree
construction do not address the real time question, although it would be
interesting to try many of them out to see whether others might do better for
the real time problem than entropy--this issue has not been fully explored.

The question thus arises as to what the limitations are of this approach
and whether it is reasonable to believe that further work could push back the
limitations. This chapter will seek to identify a number of the more promising
ideas for extension of the work; the description in this chapter is by no means
intended to be complete.




Section 9.1 -- Reasoning under Uncertainty

Perhaps the most important capability that would need to be added to this
approach would be the ability to reason under uncertainty. Right now there is
only a limited ability in the sense that the system can handle tests that have
outcomes that are consistent with more than one fault. However, there is no
general ability to handle arbitrary changes in the probability of faults as the
reasoning process progresses. The probability of a fault can only be zero or in
the same proportion to other possible faults that existed at the beginning of
the execution of the reactive plan.

It seems clear that-a direct approach--planning in advance all possible
combinations of probabilities of faults that may occur during the reactive
planning process--would be prohibitively expensive in terms of the amount of
storage space that would be consumed by the reactive plan. A separate node
would be needed for each such combination, and the number of such nodes
would be far greater than at present when a node is needed only for each
distinct differential diagnosis.

However, the implementation described in chapter 8 provides some
clues as to how reasoning under uncertainty could be incorporated into this
approach. In that chapter, a fuzzy pattern recognizer is described which is
able to perform reasoning under uncertainty. This is incorporated into the
approach in a rather trivial way--the outcomes from the fuzzy pattern
recognizer are converted into binary outcomes for the tests on the basis of
whether the level of belief exceeds a particular threshold. However, this does
serve as the basis for being able to reason with uncertainty. The criterion for
deciding that a particular test outcome has occurred is not whether the
outcome has occurred (this may be uncertain) but whether one is prepared to
act as though the outcome has occurred.

Hence, there are several research issues that would need to be addressed
to be able to more fully incorporate reasoning under uncertainty into the
approach. The first is that a theory would need to be developed of when it is or
is not appropriate to act as though a certain test outcome has occurred. Many
of the criteria that are taken into account both in this thesis and in Dabija's
work [DA94] would also be needed to make such a determination. For example,

95




the costs of acting versus the costs of not acting, and the consequences and
side effects of actions would need to be taken into account.

The second research problem involves making a non-trivial connection
between the feasoning under uncertainty literature and this work.
Approaches thélt could be taken include using a belief network to update belief
in nodes, where the belief network is not necessarily the same structure as the
action-based hierarchy--since one is used to determine level of belief and the
other to determine when to act, there is no reason to believe they would be the
same structure. Another possible approach would be to expand the fuzzy
pattern recognizer work so that a single instance of invoking the pattern
recognizer can be used to determine possibility measures for a number of
nodes in the hierarchy. To successfully integrate such approaches requires
that one learn how the restructuring of the hierarchy affects the shape of the
belief network used to determine probabilities within the hierarchy.

Using a more sophisticated approach to reason under uncertainty
requires that a more sophisticated model exist for determining the "costs" of a
test. The process of performing a "test" now would involve gathering perhaps
multiple pieces of information until enough information is amassed to put the
belief in a particular outcome high enough that one is prepared to act.
Estimating this would be an interesting challenge.

Given such an estimate, one could still use the hierarchy structuring
algorithm as before, but the question arises whether the existing approach
would produce a useful hierarchy in such more complex cases. This is the
third research problem that has to be addressed.

Section 9.2 -- Deliberation in Real Time

The assumption underlying much of this research is that it is desirable to
precompile solutions in advance to reactive problems, at least as much as
possible, because the structuring process is sufficiently complex and
computational resources sufficiently scarce in real time that it cannot be
wasted on hierarchy structuring. Certainly we are not the only researchers to
make this assumption--implicit in the work of Bratko et.al. [BR87] or Widman
[WI91] or any decision tree structuring algorithm this same assumption is
made. But is it a reasonable assumption to make? This is something that has
not been addressed by this research.




If this assumption were not made, then rather than having a
precompiled hierarchy, instead a differential diagnosis would at all times be
maintained. Whenever it was needed to perform a test, one would be selected
from the set of available tests according to which had the highest action-based
heuristic. In other words, rather than compute the whole hierarchy in
advance, only that portion of the hierarchy needed to perform diagnosis would
be computed, and that portion would be computed in real time.

There are potential advantages and disadvantages to this approach. One
major advantage is that concern over a possible explosion in the number of
nodes would be alleviated. This is something that the complexity analysis of
chapter 4 could not fully address--the empirical evidence is that it is not a
problem in practice, but not having to construct the hierarchy would
guarantee that it does not become a broblem. Another advantage is that
dynamic replanning would not become a costly venture from the point of view
of the reactive planner. Since there in effect would no longer be a reactive
planner, dynamic replanning would become essentially free. Another
possible advantage would be that another approach to reasoning under
uncertainty would become available. In the last section, using the action-
based approach in a direct manner to reasoning under uncertainty was
dismissed because of the inordinate number of nodes that it would produce.
However, if the hierarchy does not need to be compiled in advance, that
objection would disappear and it might become an attractive alternative.

The major disadvantage, of course, is that some computation that might
be done in advance is now being done at run time. This is why it is an
extremely interesting research question. It seems fairly obvious that for a
sufficiently large hierarchy, it would be too costly to do this at run time, so the
precompilation approach would become necessary. However, it is not clear
whether the hierarchies one encounters in practice are likely to be large
enough for this tradeoff to be necessary.

Another possible drawback is that it is no longer possible to do test
promotion. Test promotion requires that knowledge about the structure of the
hierarchy below a particular node be available. Since the structuring is being
done on the fly at run time, the only information available is that directly
relevant to the particular node being looked at. In certain domains, test
promotion is essential and hence this is a serious drawback.

97




Section 9.3 -- Decay in Values of Actions

The value of an action for a particular fault is assumed to be constant up to the
hard deadline, and then zero thereafter. This clearly is not valid in general.
Indeed, Rutledge [RL91] has proposed that various models be used for the decay
in the value of actions as a function of time.

Two issues would need to be addressed in order to handle this decay. The
first would be the necessary changes to the hierarchy structuring algorithm
to handle the knowledge of how values of actions decay over time. This is
unlikely to be a substantially more difficult problem than the currently
handled problem of deadline distributions. Whereas, at present, value is a
constant in the integral that is evaluated in handling deadline distributions, in
the case of decaying values it would be become a variable like the deadline
distributions themselves. In fact there will no longer be any notion of a hard
deadline in the theory, although the concept of a hard deadline could be
implemented by having the value of an action explicitly be what it has been
previously assumed to be--constant up to the hard deadline and zero
afterwards.

The concept of a soft deadline also changes somewhat with this
approach. It becomes possible to compute in advance what the soft deadline is
based upon the information that the reactive planner has at its disposal. More
precisely, it is necessary to take into account the costs of performing actions
in deciding whether to perform an action at a non-terminal node. If the cost
of further delay in performing the action is greater than the potential wasted
cost of performing an action at a high level node that will subsequently prove
to be unnecessary, then the action should be performed. The time point at
which this becomes true can be computed in advance, and becomes the soft
deadline. This requires that costs of actions have a more vital role in the
structuring of the reactive plan. Previously they have been taken into
account but only as deductions from the value of actions.

An interesting question arises as to what happens when the agent
knows that it has reached a soft deadline and should act (as was previously
assumed to always be the case) but has not reached the computed soft deadline-
-i.e. if the two notions of soft deadline conflict. The most obvious answer is
that the earlier soft deadline should always be taken to be accurate, especially
if the earlier soft deadline is the one the agent knows about in real time, not

98




the previously computed soft deadline. The computed soft deadline was merely
an estimate; the soft deadline known about in real time is based on more
accurate information. However it would be useful to more fully investigate
this question. |

Probably the trickiest question to address is how to decide which decay
function to use for the value of an action in the first place. To address this
question, Rutledge's work is likely to be helpful.

Section 9.4 -- A Theory of Value of Action

In acquiring the necessary domain knowledge to solve this problem, it was
found that providing information about the value of actions for particular
faults was the most difficult problem. It was just not natural for domain
experts to think in terms of value of action on a scale of 0-1; however some
sort of numeric value was necessary to be able to successfully compare
different values. What was more natural for domain experts to provide was
qualitative information about what different actions did for different faults--
completely solved the problem, solved the problem almost entirely, treated the
symptoms but not the fault, etc.

Therefore, another suitable research direction to take would be to devise
a theory of value of actions for faults such that domain experts would be able
to provide such information more naturally. There are two main paths such
research could take. The first would be to provide some mechanism for
translating qualitative values into quantitative--the domain expert would
provide the qualitative value while the reactive planner would use the
quantitative for hierarchy structuring purposes. If the domain expert
provided the translation table then the same problem would come up--the
expert would not know how to assign these magic numbers. Hence it would be
necessary fo have a more basic theory of action such that the values could be
computed without the need for the domain expert to provide them.

The other path that could be explored would be to not use quantitative
measurements for values at all. Since ultimately the only purpose for the
quantitative measurements is to be able to compare different actions, if
another theory could be provided for doing this, quantitative measurements
would no longer be necessary. The most obvious way to do this, simply
ranking the different qualitative values, would probably not work. The reason




is that a test that identifies a high value action for one obscure fault that is
higher value than the best action identified by ény other test would be
recommended. This test might not be the best one to perform overall. A better
way might be to also rank the faults, so that a test giving high value action for
the highest ranking fault would be performed.

Section 9.5 -- Other Structuring Heuristics

It would be worthwhile to explore other possible heuristics for structuring the
hierarchy. For example, the class separation heuristic of Fayyad and Irani
referred to in chapter 3 would be interesting to explore more fully. Although
as stated in that chapter it is unclear how to directly apply that approach
because they presuppose that the goal is to identify classes of faults rather
than individual faults, it is also clear that there is some connection between
the two pieces of work. In practice the action-based approach succeeds
because there are large classes of faults for which there is a single good
(although not necessarily optimal) action to perform. It is possible that an
algorithm could be developed to explicitly identify those classes of faults and
then use the class separation approach to structure the hierarchy. Still, it
seems that some refinement of the class separation approach would be
necessary because the definition of a "class” would change as one moved down
the hierarchy--when all the faults at a particular node are members of the
same "class" a refined notion of class is needed at the next level.

Only slight improvements in hierarchy performance were noticed by
using the deadline distribution heuristic; it would be useful to explore
whether the heuristic could be refined to better take into account the
information about deadline distributions. There seems to be no reason to doubt
the basic hypothesis that deadline distributions affect hierarchy structuring,
S0 it is to be expected that further explorations there would be worthwhile.

100




Appendix A
ReAct Programming Manual

Section A.0--Introduction and Overview

The purpose of ReAct is to provide response in real time. ReAct aims to provide
optimal response by completing a diagnosis before deadline; however it will
settle for a suboptimal diagnosis and action if that is the best that is possible
before deadline. It does so by using an action-based hierarchy that is designed
so as to always provide ReAct with an action to perform should it run out of
time within which to make diagnoses. The higher-level nodes in the
hierarchy are more general and have associated with them actions of general
applicability that may nevertheless be suboptimal in specific instances;
conversely, the lower-level nodes have associated actions that are very
specific but optimal for their very specific purpose.

There are two main parts to ReAct which we describe in this document.
The first part, known as the hierarchy structuring algorithm, produces a
ReAct hierarchy given a set of possible faults and other information. The
second part, known as the ReAct run-time component, uses either the
hierarchy produced by the structuring algorithm or a hierarchy supplied by
the user to monitor critical events in real-time and provide appropriate
response.

ReAct is designed to be domain-independent; however, at present the
main example of a system that actually uses ReAct is the Guardian intensive-
care unit patient monitoring system. Hence this document will both use
examples from Guardian and will describe how to use the particular instance
of ReAct found in Guardian.

Figure 1 shows the relationship between ReAct and the necessary other
parts of any system in which ReAct runs. It runs as part of the BB1 system and
requires that Timeline, Focus, and FPR also be used. Mostly ReAct interacts
directly with Timeline, which is a database containing all temporal data, which
in a real-time system is virtually all data used by the system. ReAct works on
problems that require response in real time, and it posts its partial solutions to
Timeline. Meanwhile, data about the world originates in Focus and is sent,
after being preprocessed by Focus, to Timeline. A fuzzy pattern recognizer

101




(FPR) notices relevant sets of parameter values and posts information about
matches to Timeline. Finally, when ReAct notices that a certain parameter
value may help it make further diagnoses, it may send a message to this effect
directly to Focus, instructing Focus to send particular data more frequently.
Readers interested in more details about these systems should consult the
appropriate references for Focus [WA89], Timeline [AS90], and FPR [DR91].

Section 1 of this document describes the basic knowledge needed to run
ReAct--how to load the system, and basic information about faults, actions,
etc.--that is essential to understanding ReAct. Section 2 gives details on how to
use the ReAct structuring algorithm to automatically generate hierarchies. It
also describes the logical syntax used by ReAct to represent test outcomes and
compares this syntax to that used by FPR. Finally, Section 3 describes how
ReAct works when a system incorporating ReAct is actually run. ’

Section A.1--Basics

In this section we describe how to load ReAct as well as describe the basic
information that a user of ReAct will need to have about his or her domain to
make effective use of ReAct.

A.1.1 Loading BB1

ReAct runs in version 2.5 of BB1. BB1 can be loaded by loading the following
file:

(load "x23:dash.demo5;bbl-setup")

When this file is loaded, the user will be given the following prompts, with the
appropriate answers in boldface:

Which Guardian system? -- Demo5

Load which BB1 system? -- BB1 (2.5)

Load the BB1 communication interface? -- Yes
Load which BB1 system? -- quit loading

102




When this is done, the user can enter BB1 by typing System-1. The user will
then be ready to load the system he/she is working.

diagnostic and /
monitoring
data
requests about
problems
parameter
values
Focus * Timeline
parameter matched
values patterns
FPR
BB1 System

Figure 1: ReAct and necessary supporting components

A.1.2 Loading the System

Once in the BB1 screen, a system can be loaded by typing L for load. The user
will be prompted for the system name--for the existing system, the response
would be GUARDIAN. The user will then be asked for the file to load. The

current file being used is:

x23: dash.demoS5; guardian-setup

103




As part of the loading process, this file will load
x23: dash.demoS5; demo-setup

Because the work is somewhat specific to Guardian at present, the user will be
prompted to load specific Guardian subsystems. Obviously if Guardian is being
used, the user will want to load many of these subsystems, but even if Guardian
is not being used, the following minimal set of subsystems is required at
present: Generic, Timeline, Control-Plan, FPR, Guardian, Global-
Control, Perception, ReAct. This is because of various dependencies. It is
to be hoped that as ReAct is refined, most of these dependencies will be
removed, and we will be able to use ReAct after loading only Timeline, FPR,
and ReAct.

The user who wishes to use ReAct as part of some system other than
Guardian will probably want to modify the above files to make them
appropriate for the system actually being used; however it is essential that the
files associated with the above subsystems actually be loaded if ReAct is to be

used successfully.

A.1.3 Files Loaded as part of ReAct

When the ReAct subsystem is loaded, the following set of files is loaded:
x23:dash.demo5;guardian-react-kb

This is the main ReAct file at present. It actually consists of two subparts: the
ReAct knowledge base, which is specific to the Guardian domain, and the ReAct
knowledge sources, which are generally applicable to all domains. Future
versions of this file will be split into two parts.
x23:dash.demoS5;react-communication-kb

This file contains a domain independent knowledge base that enables

communication between ReAct and the ReAct display screen. It should always
be loaded if we want to use the ReAct display.

104




x23:dash.demo5;bb1-fns-split

This file contains functions associated with the ReAct display that run on the
BB1 machine (as opposed to the display machine).

x23:dash.demoS5;react-fns

This file contains Lisp functions in support of the BB1 code in guardian-react-
kb.

x23:dash.demoS5;acls-algorithms

This domain-dependent file contains functions that recommend and display
one of the ACLS algorithms when it is appropriate based on the results of an
EKG.

A.1.4 Domain Information Required by ReAct

In this section we describe the domain knowledge that is required in order to
use ReAct. It should be remembered that ReAct can be used in either of two
modes--either the user supplies a hierarchy, or the user supplies a set of faults
and asks ReAct to automatically structure a hierarchy based on this set of
faults. Obviously in the former case, more domain knowledge will be needed in
order to use ReAct; this section will make clear what body of domain
knowledge is required in either case.

A.1.4.1 Faults

Faults are the most basic units of diagnosis in the ReAct system. That is, the
system always endeavors to precisely diagnose a specific fault. The user of
ReAct will always need to specify the set of faults that has to be diagnosed.
Faults are then organized into a hierarchy of diagnoses, where each diagnosis
consists of a set of faults. The organizing of faults into hierarchies of
diagnoses need not be provided by the user, although it can be--if it is not
provided, then the hierarchy structuring algorithm will do it for the user.

105




Faults are normally included on the hierarchy.faults level and diagnoses on
the hierarchy.diagnoses level.

A.1.4.2 Therapeutic Actions

Also known simply as actions, therapeutic actions are actions that are taken to
alleviate the faults that are diagnosed. Therapeutic actions will be performed
(or recommended for performance) either when a deadline is reached or
when a complete diagnosis down to a fault node is made. Normally, therapeutic
actions are provided by the user, and they are found in the react-
actions.therapeutic level. There is a therapeutic-action link between
faults or diagnoses and their associated therapeutic actions. Either the user
can provide these links, or they can be produced by the hierarchy structuring
algorithm. ' |

A.1.4.3 Monitoring and Diagnostic Actions

Also known loosely as tests, these actions are performed to gather more
information about the situation when a complete diagnosis has not been made.
Monitoring and diagnostic actions are similar in that they both compel the
system to gather more information--the difference is that diagnostic actions
cause a single parameter value to be measured once, whereas monitoring
actions cause the rate at which a parameter value is measured to be increased
until further notice. Monitoring and diagnostic actions are performed as
necessary to complete the diagnosis process. Normally, monitoring and
diagnostic actions are found on the react-actions.monitoring and react-
actions.diagnostic levels respectively. There is a monitoring-action or
diagnostic-action link between faults or diagnoses and their associated
actions. Either the user can provide these links, or they can be produced by
the hierarchy structuring algorithm. Also, there is a comprises link
between the monitoring or diagnostic action and the specific parameter to
which it corresponds. '

106




A.1.4.4 Values

Each therapeutic action and fault pair has an associated value, which is a
heuristic estimate between 0 and 1 of the value of performing the action for
that specific fault. Values for therapeutic actions are not directly represented
in the ReAct ontology at present in a complete fashion. However, the attribute
default-value is used in therapeutic actions to denote the default value of
that action for all faults for which it has positive value. It has positive value
for a fault if it is the associated therapeutic action for that fault or any of its
ancestors in the hierarchy. The default value for any action is overridden by
the specific-value attribute, which is a list of pairs of faults and values. All
value information must be provided by the user.

A.1.4.5 Costs

The cost of performing a test is indicated by the cost attribute of the associated
parameter(s). The cost at present is simply the real time (in minutes) for
performing the test. For monitoring actions, the cost is the frequency of
monitoring. Note that we are using a narrow notion of cost here--the cost is
simply the amount of time taken to perform the test, so especially in the case
of monitoring actions, may seem to be the exact opposite of what a standard
notion of cost would be. We expect to extend the notion of cost significantly in

future versions of ReAct.
A.1.4.6 Priors
The prior probability of a fault is indicated by the pp attribute. All prior

probability information must be provided by the user, and is normalized so
that the sum of all priors is 1.0--ReAct makes the single fault assumption.

A.1.4.7 Tests
The notion of a test was introduced above as a loose equivalent of monitoring
and diagnostic actions. More precisely, a test is a means for identifying

whether faults are present or not present. A test has a number of outcomes,
each of which is consistent only with certain faults. At present, tests are not

107




represented in an especially precise manner. The test really consists of both
the diagnostic/monitoring action, and the means of using the results of that
action to refine the diagnosis. At present, the results of the action are
incorporated into the hierarchy using the fuzzy pattern recognizer (FPR).
Tests are needed, however, to run the hierarchy structuring algorithm that is

described below.

Section A.2--Running the ReAct hierarchy structuring
algorithm

ReAct provides an algorithm for automatically structuring the hierarchy. In
this section we describe how to use this algorithm.

A.2.1 Loading the React hierarchy structuring algorithm
The files to load for the ReAct hierarchy structuring algorithm are:

(load "x12:dash.demoS5;restructure")
(load "x12:dash.demo5;logical-opers")

The first file is termed "restructure" as opposed to simply "structure" because it
is capable of taking an existing hierarchy structure and producing a new
structure based upon the hierarchy structuring heuristic preferred by ReAct.
This file should be loaded only after ReAct itself has been loaded as described
in Section 1. The other file, "logical-opers", provides logical support for FPR-
pattern related work. It is described in more detail below.

A.2.2 Running the ReAct structuring algorithm
The main function to be run in structuring the hierarchy is:

(restructure faults tests costs priors actions values
&optional (heuristic #'determine-test-heuristic))

In the rest of this section we describe the structure of the inputs to this
function:

108




faults -- This is a list of the faults that need to be diagnosed. ReAct assumes
no internal structure whatsoever within the faults, so the elements of the list
can be anything the user wants.

Example -- (f1 {2 £3)

tests -- This is an association list of test names and the partition that that test
forces on the faults. Each partition, in turn, is a list as long as the number of
possible outcomes of the test, with each element being the subset of the total
set of faults that could be present if one of the outcomes of the test occurs.
Example --(t1 ( (:faults (f1 £2)

rresult (pl le 7.45) )

(:faults (£f3) ‘

rresult (pl gt 7.45)))

t2 ( (:faults (f1)

result (p2 ge 8.12) )

(:faults (f2 £3)

rresult (p21t8.12) ) ) )
The :results of tests indicated in the above example are the specific outcomes
of each test that would lead to the corresponding faults being present or not
present. The syntax of these logical operations will be described in detail in
Section 2.5.

costs -- This is an association list of test names and the cost (in real time
consumed) of performing that test.
Example -- (t1 30.0 t2 5.0)

priors -- This is an association list of faults and the prior probabilities of
each fault. Each prior must be between 0 and 1, and if they do not add to 1, the
priors will be normalized.

Example -- (f1 0.7 £2 0.2 3 0.1)

actions -- This is a list of the therapeutic actions that are available to be
performed. ReAct assumes no internal structure within the actions, so they
can be anything the user desires.

Example -- (al a2 a3)

109




values -- This gives the value for each (action, fault) pair. It is represented
as an alist of actions and alists of faults and values.

Example -- (al (f1 0.0f20.5f3 1.0)a2 (f1 0.4 2 0.4f30.4)a3 (f1 1.0f21.0f3
0.1))

heuristic -- This is a function that computes, for a given test, the heuristic
estimate of the effectiveness of performing that test in the diagnosis process.
It is described in more detail in the following section.

Example -- determine-test-heuristic

A.2.2.1 Selecting a hierarchy structuring heuristic

As observed in the last section, the final parameter to the hierarchy
structuring function, heuristic, allows the user to specify the heuristic to be
used in deciding which test to perform at each level in the hierarchy. This
function has the following parameters:

(heuristic-fn tests-outcome-restr priors actions values faults
test-costs value-so-far)

The parameters to this function are:

priors, actions, values -- Same as in the last section.

faults -- This is a subset of the total set of faults, namely it is those faults
associated with the current node that are still possible diagnoses. The goal is to
identify the best action to perform that will help diagnose the particular one
of these faults which is actually present.

tests-outcome-restr -- This is constructed from the alist of tests (described
in the last section) by first removing the cars of all the pairs, and then

removing all faults that are not part of the faults list described above.

test-costs -- This is constructed from the alist of costs (described in the last
section) by removing the cars of all the pairs.

110




value-so-far -- This is the expected value of the best possible action for the

set of faults described above.

There are several available heuristics for structuring the hierarchy. The
default heuristic, determine-test-heuristic, computes the greedy best-
marginal-action functioﬁ for producing an action-based hierarchy described
in [AS93]. Another heuristic, determine-test-dectree, computes the
decision-theoretic value of performing each test, again using the formula
given in [AS93]. Yet a third function, included for controlling the ReAct
experiments, is determine-test-random. This function merely assigns the
next test to be performed by picking randomly from among those that help
distinguish among the children of the current node.

A.2.2.2 Representation of the structured hierarchy

The hierarchy structuring algorithm implemented by the function
restructure produces a data structure as output that is a Lisp object
representing the resulting hierarchy. The structure of this Lisp object is as

follows:

Hierarchy := (:result <test-result-array>
:children <children-array>
‘test <test>
:action-value <avg-value>
:action <action>
faults <faults>)

Here <children-array> is an array with one element for each child of the
current node. Each such element is a subhierarchy with the same structure as
the whole hierarchy. <test-result-array> is an array with the same number
of elements as <children-array>, with each element giving the test outcome
corresponding to the child with the same index; the format for these outcomes
will be described in section 2.5. <test> gives the set of parameters measured as
part of the test. <action> gives the action with the best expected value for this

111




node in the hierarchy. <action-value> gives this value. <faults> gives the
set of faults corresponding to this node in the hierarchy.

A.2.3 Restructuring an existing hierarchy

The reader will notice that the representation for faults, etc., described in
section 2.2 is distinct from that described in section 1. The representation in
section 1 is a BBl representation for complete hierarchies; the representation
in section 2.2 is a Lisp representation not for complete hierarchies, but for
unstructured sets of faults and their associated parameters. There is a set of
functions available for converting the BB1 objects in a complete hierarchy to
Lisp objects that can then be used as inputs to the restructuring algorithm. All
the following functions require that the user know what the root-node of the
hierarchy (as a BB1 object) is:

(extract-faults root-node) -- Gives the faults input to the restructuring
algorithm.

(test-generation root-node) -- Gives the tests input to the restructuring
algorithm.

(cost-generation (test-generation root-node))-- Gives the costs input
to the restructuring algorithm.

(extract-priors (extract-faults root-node)) -- Gives the priors input to
the restructuring algorithm.

(get-all-actions root-node) -- Gives the actions input to the restructuring
algorithm.

(build-value-struct root-node) -- Gives the values input to the
restructuring algorithm.

These functions assume that the user has a BB1 hierarchy. The user may wish
to use some other representation for hierarchies. The user may do so provided
that he/she provides methods for the following generic functions (methods
for the symbol data type are already reserved for BB1 use):

(children-of node) -- Determines the children of the node.

(parent-of node) -- Determines the parent of the node.
(get-prior-prob node) -- Determines the prior probability of the node.

112




(assoc-pattern node) -- Determines the FPR pattern used in diagnosing a
node.

(assoc-test node) -- Determines the test associated with a node. This test
must be in the format of a list of the parameters that the node measures.
(get-default-value action) -- Determines the default value of an action
for the set of faults for which it has positive value.

(get-specific-value action) -- Determines the specific value of an action
for particular faults. Default and specific values are explained in section
Al44.

(get-actions node) -- Determines the set of actions (therapeutic,
monitoring, and diagnostic) associated with a node in the hierarchy.

(cost-basic test) -- Determines the cost of performing a test (in this case,
the performing of a single monitoring or diagnostic action).

(get-misc-info node) -- Gets the pattern information for a specific
pattern. The pattern must be in the logical format used by FPR, which is
described in detail in section 2.5. |

A.2.4 Building a BB1 hierarchy from a Lisp hierarchy

There is also a feature for converting in the other direction--from the Lisp
hierarchy produced by the structuring algorithm to a BB1 hierarchy for use
in an actual system. The function to run for this is

(build-bb1-hierarchy lisp-hierarchy)
This feature is not yet implemented.
A.2.5 Logical operations

The outcomes of tests may be represented as a logical expression based upon
the values of certain parameters. The different outcomes of a particular test
should satisfy the property that they are mutually exclusive but that the
conjunction of all outcomes is a tautology. The outcomes of tests are used in
the format for the tests parameter to the restructuring algorithm, and also in
the :results pair in the hierarchy alist. The precise format for logical
expressions is:

113




LogicalExpr := (and [LogicalExpr]*)
| (or [LogicalExpr]*)
| (not LogicalExpr)
| GroundLiteral;

GroundLiteral := (<parameter-name> range <range>)
| (<parameter-name> (eq | 1t | le | gt | ge)
<parameter-value>);

The semantics of these expressions should be self-explanatory. There is also a
different format for logical expressions used by FPR, which the user of ReAct
needs to know a little bit about because of the fact that ReAct uses FPR for
pattern recognition. The FPR format for logical expressions is that returned
by the get-misc-info function. FPR assumes that there is a list of parameters
which the pattern is examining, and this list is returned by assoc-test. The
syntax for FPR logical expressions is:

FPRLogExpr := (np FPRExpr);
FPRExpr := [mand | mor | and | or] ([FPRExpr | FPRLitList]*);
FPRLitList := ([FPRLitEntry]*);

FPRLitEntry := range <range>
| [eq |1t lle | gt | ge] <parameter-value>
| (not FPRLitEntry);

There is no mention of parameter names in this syntax. The parameter names
are obtained from the list of parameters mentioned above. When a mand or
mor is encountered, the following list of FPRExprs or FPRLitLists is applied
to each element in turn of the parameter list; conversely, when an and or or
is encountered, the following list is applied to the parameter or entire
parameter list repeatedly.

Example: Assume the parameter list is (p1 p2).

114




(np mand (and (ge 5 le 7)) (and (le 8 ge 4)))

is semantically equivalent to (5 < pl < 7) A (4<p2 < 8) whereas
(np and (mand (ge 5 le 7)) (mand (le 8 ge 4)))

is semantically equivalent to (5<pl < 8)A(4<p2<7)

It should be noted that the above brief summary of FPR syntax and semantics
by no means captures the whole of FPR and in particular omits completely the
ways in which FPR handles fuzzy data, which is in fact the whole reason why
FPR was designed. However, at present ReAct is not designed to deal with fuzzy
data, so this section has given a brief summary of those aspects of FPR
necessary to interface successfully with ReAct. A complete description of FPR
may be found in [DR91].

Section A.3--Using and running ReAct

If the user wishes to design his or her own hierarchy there are essentially
three files which are needed. These are the ReAct knowledge base, the FPR
knowledge base, and the classify parameter file. This section provides

instructions for setting up these files.

A.3.1 ReAct Knowledge Base

A sample ReAct KB is contained in the file x12: dash.demo5; guardian-
react-kb. It is recommended that the user wishing to design his/her own
ReAct KB begin with this file as a model. Within this file two types of BB1
objects are defined: diagnosis/fault objects, and actions. Here is a sample
diagnosis from this file:

(def-bbl-object decr-contractility

:level hierarchy.diagnoses

115




:attributes (

:links (
(subdiagnosis-of
(hierarchy.diagnoses.oligemic-hypoxia))
(has-subfault (hierarchy.faults.ischemia
hierarchy.faults.myo-depr-post-cpb
hierarchy.faults.myo-depr-sepsis))
(reflected-by (fpr-po.basic.decr-cont-pattern))
(monitoring-action
(react-actions.monitoring.map
react-actions.monitoring.ekg
react-actions.monitoring.hr
react-actions.monitoring.co
react-actions.monitoring.svr
react-actions.monitoring.pcwp)
)
(therapeutic-action
(react-actions.therapeutic.ionotropic-agents)
)
(diagnostic-action
(react-actions.diagnostic.st-depression
react-actions.diagnostic.chest-pain
react-actions.diagnostic.abg)

)

The subdiagnosis-of link indicates the parent node of this ﬁode; the has-
subfault link indicates the children nodes. Incidentally, the KB
distinguishes between faults, which correspond to leaf nodes, and diagnoses,
which correspond to intermediate leaf nodes (the term diagnoses is actually
short for partial diagnoses). The reflected-by link is the link to the FPR
pattern which is used to diagnose this node. The three action links all indicate
associated actions of the various types..

116




The ReAct KB file also contains definitions of the actions known by the system.
Here, from the same file, is a sample action used by ReAct:

(def-bb1l-object increase-fio2
:level react-actions.therapeutic
:attributes ( (default-value 0.5)
(specific-value ((hierarchy.faults.bronchospasm 0.6)
(hierarchy.faults.hypoxia 0.4)
(hierarchy.faults.ischemia 0.4))))
:links nil

Here, the level refers to the type of action being represented. The default-
value is the default value of this action for all faults for which it has positive
value (normally those faults which are descendants of the corresponding
diagnosis in the hierarchy). The specific-value gives exceptions to  default

value.

A.3.2 FPR Knowledge Base

A sample FPR knowledge base to be used in conjunction with ReAct may be
found in the file x12: dash.demoS5; fpr-pspec-kb. Following is a sample
pattern from this KB.

(def-bbl-object-eval normal-anion-pattern
:level fpr-po.basic
:attributes ((Ap #'identity_fun)
(vp #'identity_fun)
(np (produce_MAND
(produce_range 'anion/gap 'normal)
(produce_OR
(produce_range 'laba/ph 'low)
(produce_range 'laba/ph 'very-low))
(produce_range 'lab/hco3 'low)))
(dp 3)

117




(measures '(anion/gap laba/ph lab/hco3))
(item 'normal-anion-pattern)
(misc-info '(np MAND
| (range normal OR
(range low range very-low)
range low)))

This pattern signifies that anion-gap is normal, laba/ph is low or very-low,
and lab/hco3 is low. A more detailed description of the semantics of FPR
patterns may be found in [DR91].

A.3.3 Parameters

As has been noted a number of times earlier in this manual, ReAct uses FPR
patterns in order to make diagnoses, and FPR in turn uses parameters to make
diagnoses. In this section we describe how to set up parameters so that they
may be used by ReAct/FPR. There is a sample file provided which shows how
to set up parameters: x12: dash.demoS5; classify-parameter-kb. There
are three steps involved in adding a parameter to the ReAct system: defining
the classifications for a parameter, defining the ranges, and recompiling the
classifier file.

A.3.3.1 Defining the classifications for a parameter

There are two possible cases here: the parameter is something with a
numerical measure, or alternatively it is a qualitative measure which takes on .
one of a finite, discrete set of values. In the former case, assuming the
classifications of very-low, low, normal, high, and very-high are sufficient
for the user's need, there will be no need to alter the classifier file. In the
latter case, the user should look for the (setf *classifier-info* ... ) form in
the file, and in particular the qualitative subcase. Following are the
qualitative classifications for the EKG parameter:

(setf *classifier-info*

118




(oo
(qualitative (...

(asystole 15)
(diastolic-disfn 16)
(emd 17)
(parox/supra/v/tach 18)
(v/tach/no-pulse 19)
(v/tach/pulse 20)
(vent/ectopy 21)
(st-segment 35) ... )

Here the various classifications for EKG are asystole, diastolic-disfn,
The numbers after the classifications have no significance other than that
each classification in the system must have a unique number assigned to it.
The user can add parameters to the system by following the above model. Note
that in the *classifier-info* form, the name of the parameter itself is
never used. The name of the parameter itself will appear elsewhere.

A.3.3.2 Defining the ranges for a parameter

It is also necessary to make a correspondence between numerical values for a
parameter and the qualitative ranges discussed in the last section. This is done
in the (setf *parameter-info* ...) form in the classifier file. An example
of how this is done for the EKG parameter follows:

(EKG nil
(nil concept.natural-type.qualitative nil nil)
(asystole diastolic-disfn emd parox/supra/v/tach
v/tach/no-pulse
v/tach/pulse vent/ectopy st-segment)
(nil0123456nil)

119




Note that the classifications defined in the previous section are used in
defining the ranges in this section. What the above does is artificially assign
numerical ranges for the various qualitative values which EKG can have (the
last line gives the artificial numerical ranges). For example, asystole will
correspond to numerical values less than 0, diastolic-disfn to numerical
values between 0 and 1, and so on. By using the range options for logical
expressions, it will not be necessary to know these artificial values in setting
up patterns. However, any simulator which produces values for qualitative
parameters will need to know the artificial values.

Obviously the use of these artificial numerical values, both in this
section and the previous one, is extremely awkward, and we hope that future
versions of ReAct will not require that we do this.

A.3.3.3 Recompiling the classifier file

Because much of the classifier file is automatically generated and depends on
parameter classifications defined above, it is necessary to regenerate and
recompile the classifier file once the parameters have been defined. The code
for doing so is due to Rich Washington and can be found in the file itself by
searching for the string "TO CHANGE THIS FILE". Once the file has been
regenerated, it will of course be necessary to recompile it.

A.3.4 Running ReAct

Once you have a complete ReAct KB, either defined by the user or generated by
the hierarchy structuring algorithm, you are ready to run ReAct either stand-
alone or as part of a larger BB1 system. The use of BB1 is obviously beyond the
scope of this document and the interested reader is referred to [GA86]. ReAct
provides a set of five knowledge sources for diagnosis and recommendation of
action:

A.3.4.1 Recognize-Problem
ReAct always begins by noticing that a problem is present, normally by

noticing an abnormal value of a parameter which affects some parameter
associated with the FPR patterns relevant to FPR. When ReAct recognizes a

120




problem, it posts this fact on the blackboard. As ReAct continues refining its
diagnosis, it will post additional information about the problem on the
blackboard. Each problem always has a current best hypothesis, which always
starts at the top of the hierarchy and moves down the hierarchy as the
hypothesis is refined.

A.3.4.2 Incorporate-Evidence

When an FPR pattern relevant to the hierarchy is noticed, the information
associated with that pattern is incorporated into the hierarchy.

A.3.4.3 Down-Hierarchy

This KS changes the current best hypothesis for one of the problems that
ReAct is working on from a parent node to one of its children. At the same
time, a decision is made as to whether all alternative children have been ruled
out. If so, no new problems will be created. If not, an alternative problem will
be posted to the timeline because the possibility is that more than one fault is
present. ReAct will then be working on two or more problems at once.

A.3.4.4 Recommend-Action

This KS activates when either a deadline is reached or a leaf node of the
hierarchy becomes the current best hypothesis. The effect of this KS is to
recommend the therapeutic action associated with the current best hypothesis.
If we are not at a leaf node, however, we do not stop diagnosis just because we
have recommended an action. .

A.3.4.5 Coordinate-Actions

Because ReAct does not make the single fault assumption, it is possible that it
will recommend therapeutic actions associated with more than one node at a
time. There is the possibility that there will be conflicts between these actions
in that they cannot both be performed at the same time. This KS looks at the
potential conflicts and attempts to resolve them. For actions, the links
contra-indicated and contra-temp-indicated are used to indicate those

121




other actions which either cannot be performed if this one is performed, or
cannot be performed at the same time. This KS attempts to resolve this conflict

by constructing a schedule of actions to perform.

A.3.5 ReAct Ontology

Figure 2 shows the complete ReAct ontology with all links that are relevant to

what has been discussed above.

122




timeline

evidence posted on

Timeline-related objects

interval

problem

————» problem [——®hierarchy.problem.problem

instantiates exemplifies

instantiates \ caused-by

ReAct
Hierarchy hierarchy.diagnoses.oligemic-hypoxia .
f subdiagnosis-of deady deadline of node
hierarchy.diagnoses.decr-contractility| pp prior of node
subfault-of Nbfault—of
hierarchy faults.ischemia hierarchy.faults.myo-depr-sepsis
LY
diagnostic-action ReAct Actions
comprises
react-actions.diagnostic.abg
. monitoring-action
FPR objects /

fpr-po.basic.decr-cont-pattern

react-actions.monitoring.svr anrisa

Figure 2: ReAct Ontology

parameter.parameter.siemens/svr

erapeutic-action

react-actions.therapeutic.ionotropic-agents

\contra-  contra-
indicated MP-
! indicated

specific-value

default-value

specific value actions which
for faults cannot be
performed
concurrently
default value
for all faults
‘ actions which
duration cannot be
duration of performed at
action all

123




Appendix B
Medical Knowledge Base

In this appendix is given excerpts from the medical knowledge base. This KB
was prepared by our medical colleague Dr. Garry Gold with input from Drs.
David Gaba and Adam Seiver. -

It is important to realize that this appendix represents the medical
knowledge base as provided by the medical experts and not the inputs to the
hierarchy structuring algorithm. For one thing, the medical KB was provided
in the form of a hierarchy, but this hierarchy should not be taken to be an
action-based hierarchy: it turned out that this form was a convenient way to
provide medical knowledge, but it was not assumed that the knowledge as
provided by a medical expert would take precisely the same form as that
constructed by the hierarchy structuring algorithm.

Thus, there was still a significant amount of work involved in
translating the medical KB to a form which could be used for this study. In
some cases this involved simplification--where more than one corrective
action was given for a single leaf fault, for example. In other cases, further
amplification was sought from domain experts--for example, where it was
needed to know precisely what information the various tests provided about
faults. This latter was actually a fairly complex process because the notion of a
test is not accurately represented in the medical KB--it was necessary to
extract this information. For example, different parts of the hierarchy might
rely on the same set of parameters—-in this case it was necessary to notice that
they really represented a single test.

The medical KB is presented in the form given by the medical experts
for a couple of reasons: first, it has some structure which would be lacking in
the actual inputs to the structuring algorithm, meaning those inputs would be
very hard to comprehend, and second, in cases where simplifications needed to
be made, the reader may be interested in solving the more complete problem
implied by the medical KB.

In particular, the monitoring and diagnostic actions given here are
completely ignored by the structuring algorithm, because it is part of the goal
of the structuring algorithm to determine when monitoring and diagnostic

124




actions are required. However, the presence of this knowledge inspired the

work on test promotion described in this thesis.
The first part of this appendix shows all the nodes in the hierarchy

provided by the medical experts. The second part of the appendix shows
detailed information for a part of the hierarchy referred to as "anemic

hypoxia".

125




Abnormal ABG

Overall

Evidence of flow
dependent 02
Consumption

Protein, Carbohydrate, Fat
Defficency

Acid/Base Balance 02 Delivery Problem Intemal Milieu Nutrition
High PaC02
Low Pa02
Low PO2 Normal HCT
Low HCT Normal MAP

Low 02 Sat

Normal HCT
Low MAP

Anemic Hypoxia

Oligemic Hypoxia

Hypoxemic Hypoxia

126




Anemic Hypoxia

Low BP
Low HCT

Low HV High Drain Output

Serum Ca++

Non-Mechanical

Mechanical

Bieed—x=

Anteriogram
+guiac

plt count endoscope
Low Serum Ca++
Low Pit. Count Upper Gl Bleed Lower Gl Bleed
High CT Outout  \ '
Serum BUN Wound Bleeding
Inc. PTor PTT . ;
Uremic Bleed EIZS; di'%urglcal
Inc. PTor PTT
Low Pit. Count
post op bleed
Coag Factor Def w/o coagulopathy
and nl. pit. count
Inc PT
only Incr. PTT, APTT
Uncontrolled
. Vessel
Vit K dependent Non K Factor Def
Factor Def

127




ypoxemic Hypoxia

02 Gauge Abnomal Aa 02 difference >15
02 Malfunction Diffusion Defects
Normal Fi02 and RR Low PaQ2 that responds
Low 02 Sat, Pa02 to increased MV
Vent-Perf Mismatch Hypoventilation
. . Patient on Resp. Decreased Breath Sounds
Pulmonary Edema Airway Constriction ;
onCXR }:Sllidor Depressant RorL; confirm on CXR
Drug Effect Pneumothorax
ARDS Bronchospasm
Al;nonnal Peak RR<50rRR>5
< >
Pulmonary Edema Ellevated Temp ressure or D
New Murmur CXR inftrate Compliance with TV < 10 cchg

Other R/L Shunt Pneumonia Tubing Problem Low Rate
Breath Sounds on R only
C‘Z;a:”gfcses ‘V';e Lﬁiwh Peak Pressure increases

¥ g Compliance decrease by factor of 2
' i Right
Disconnection Mainstem
Intubation
High Peak Pressure
Compliance decreases
Kinked Tube

128




- EKG
Monitor

Decreased CO, NI
o High Yolume,
N.orLow SVR

Heart Rate Problem | | Decreased Preload J | Decreased Contractiity I | Increased Afterioad I I Diastolic Disfunction
> Amythmia
Post .
Chest Pain
o ST change
A EKG Monitor Myocafdla] Myomrdl 7]
| depression depression of
| post CPB sepsis
Asystole V Tach with pulse
Vent Ectopy (PVC's) Supra Vent Tach
. VFibV Tach
Sinus Bradycardia without puise
Decreased 8P
lgT/”n Dry Membranes
CVP=PCWP Low Low VD
=PAD HCT , )
Low Pa02 Pain fet?
l Tamponad I I Hypoxia l l Anemi j I Pain I Alleregic Reaction Vasodilation Hypovolumi
? ~% y *
Elevatad Temp. History of
and RR Spinal Anestheti
Increasing
¢

l Sepsis

Temp.
] Iﬁewanningl | Spinal |

129




ntemnal Milieu 1

[Lowks | [ Honke | lowha | [FghNer]  [lowCan | [TighCani] [Lowhgs+ | | HighMg++ ]
Low
Normal Body ON;; volumece of
i
Low %m High By N volume loss
Low plasma Osm
Edema

Diutional with Diutional with Volume
Excess Body Wate Excess Body Water Depletion
and Normal Na+ and Excess Na+

130




[ Acd - Base Salancej

| PaC02 > 45 PACO? 540
pH<7.35
PaCO2 <40

HCO3<20

Respiratory Acidosis Metabolic Acidosis Respiratory Alkalosis Metabolic Alkalosis
; Urine
Anion Gap 8- 12 Anion Gap > 12 Chk%:ae <10 Chloride > 10
Normal Increased Chioride Chioride
Anion Anion Gap Loss Resistant
Gap

131




Anemic Hypoxia

Node: 02 Delivery Problem (pp = .6, more)

How Diagnosed: Evidence of flow-dependent 02 consumption (linear
relationship between VO2 and DO2), High Lactate levels, Acidosis, Urine
output < .5 cc/kg/hr, 02 sat <95, HR >110

Differential Diagnosis: Anemic Hypoxia, Oligemic Hypoxia, Hypoxemic
Hypoxia

Monitoring Actions: Monitor VO2, VO2/DO02 relationship, MAP, EKG monitor,
02 Sat, PCWP, PAD, CVP, SVR, RR, ET CO2.

Therapeutic Actions: None

Diagnostic Actions: 1. ABG (pH, p0O2, pCO2) (20 min). 2. Cardiac Output (5
min). 3. HCT (5 min). 4. Ask patient about chest pain if conscious (2
min) (to rule out ischemia). 5. Order 12 lead EKG (20 min) (ischemia). 6.
Order CXR (30 min) (pneumothorax, pneumonia).

Node: Anemic Hypoxia (pp = .4, less)
How Diagnosed: Low HCT and Low pO2 on ABG with normal MAP, PCWP, SVR.
ET CO2 high.
Differential Diagnosis: Mechanical Bleed, Non-mechanical Bleed
Monitoring Actions: Increase monitoring of HCT, MAP, CT output, O2 Sat,
PCWP, PAD, CVP. Monitor MAP and PCWP, PAD, CVP for signs of increase
and possible volume overload, which can be treated with diuretics (Lasix
10-20mg IV).
Therapeutic Actions: 1. Transfuse 1 unit of packed RBC's per every 2% the
patient is below normal HCT (treatment effective for all lower nodes but
not necessarily definitive therapy, value = .75).
Diagnostic Actions: 2. Monitor pO2 regularly with ABG (20 min). 3. Send
for platelet levels (30 min), Coagulation factor levels (1 hr), serum BUN
(30 min), DIC Screen, BT, TT (all 1 hr), PT, PTT (30 min). 4. Monitor
temperature for hypothermia (true for any transfusion >4 units). S. Send
serum Ca++ after infusion (possible citrate toxicity) (30 min) 6. Also send
K+. (10 min) 7. Monitor for possible transfusion reactions. (10 min) 8. If
GI source suspected by history, do stool guiac (10 min)

Node: Mechanical Bleed (pp = .3, less)
How Diagnosed: Low MAP, Low HCT, High CT output or blood from GI tract.
MAP can fall very rapidly.
Differential Diagnosis: Upper GI Bleed, Lower GI Bleed, Post-Surgical
Bleed
Monitoring Actions: Increase monitoring of HCT, MAP, CT output, O2 Sat,
PCWP, PAD, CVP. Monitor MAP and PCWP, PAD, CVP for signs of increase
and possible volume overload, which can be treated with diuretics (Lasix
10-20mg IV).
Therapeutic Actions: 1. Transfuse 1 unit of packed RBC's per every 2% the
patient is below normal HCT (treatment effective for all lower nodes but
not necessarily definitive therapy, value = .75).
Diagnostic Actions: 2. Monitor pO2 regularly with ABG (20 min). 3. Send
for platelet levels (30 min), Coagulation factor levels (1 hr), serum BUN
(30 min), DIC Screen, BT, TT (all 1 hr), PT, PTT (30 min). 4. Monitor

132




temperature for hypothermia (true for any transfusion >4 units). 5. Send
serum Ca++ after infusion (possible citrate toxicity) (30 min) 6. Also send
K+. (10 min) 7. Monitor for possible transfusion reactions. (10 min) 8. If

GI source suspected by history, do stool guiac (10 min).

Node: Post-Surgical Bleeding (pp = .15, less)

How Diagnosed: Low MAP, Low HCT, High CT output, or CT output that does not
decrease over time. MAP can fall very rapidly.

Differential Diagnosis: Coagulation Factor deficit, Uncontrolled vessel,

Low Platelet count

Monitoring Actions: Increase monitoring of HCT, MAP, CT output, O2 Sat,
PCWP, PAD, CVP. Monitor MAP and PCWP, PAD, CVP for signs of increase
and possible volume overload, which can be treated with diuretics (Lasix
10-20mg IV).

Therapeutic Actions: 1. Transfuse 6 units of platelets and 500 units of FFP
(treatment effective for all lower nodes but not necessarily definitive
therapy, value = .85). 2. Transfuse 1 unit of packed RBC's per every 2%
the patient is below normal HCT (treatment effective for all lower nodes
but not necessarily definitive therapy, value = .75).

Diagnostic Actions: 3. Check for blood from vomit or rectum, melanic
stools (5 min). 4. Monitor pO2 regularly with ABG (20 min). S. Send for
platelet levels (30 min), Coagulation factor levels (1 hr), serum BUN (30
min), DIC Screen, BT, TT (all 1 hr), PT, PTT (30 min). 6. Monitor
temperature for hypothermia (true for any transfusion >4 units). 7.
Send serum Ca++ after infusion (possible citrate toxicity) (30 min) 8.
Also send K+. (10 min) 9. Monitor for possible transfusion reactions.
(10 min) 10. Stool Guiac (10 min).

Node: Lower GI Bleed (pp = .15, less)

How Diagnosed: Copious bright red blood from rectum; +stool guaic,
+arteriogram or red cell scan.

Differential Diagnosis: None

Monitoring Actions: Increase monitoring of MAP, 02 Sat, CT out, Rectal
output, PCWP, PAD, CVP.

Therapeutic Actions: 1. Transfuse 1 unit of packed RBC's per every 2% the
patient is below normal HCT (treatment effective for all lower nodes but
not necessarily definitive therapy, value = .75). 2. Prepare patient for
surgery if source can be identified (definitive therapy, value = 1.0).

Diagnostic Actions: 3. Order red cell scan (2 hr) or arteriogram (2 hr)to

find source of bleed; endoscopy (1 hr) to rule out profuse upper GI bleed.
4., Frequent HCT (S min) and ABG (20 min) if bleeding continues. 5. Send
for platelet levels (30 min), Coagulation factor levels (1 hr), serum BUN
(30 min), DIC Screen, BT, TT (all 1 hr), PT, PTT (30 min). 6. Monitor
temperature for hypothermia (true for any transfusion >4 units). 7. Send
serum Ca++ after infusion (possible citrate toxicity) (30 min). 8. Also
send K+ (10 min). 9. Monitor for possible transfusion reactions (10 min)

Node: Upper GI Bleed (pp = .2, less)

How Diagnosed: Low HCT and acute drop in MAP and/or bright red blood per
rectum if acute, dark stools (melena) if slower. Usually diagnosed by
endoscopy (fiber optic scope put in stomach).

133




Differential Diagnosis: None

Monitoring Actions: Increase monitoring of MAP, O2 Sat, CT out, Rectal
output, PCWP, PAD, CVP.

Therapeutic Actions: 1. Transfuse 1 unit of packed RBC's per every 2% the
patient is below normal HCT (treatment effective for all lower nodes but
not necessarily definitive therapy (value = .75)). 2. Acute treatment is
usually sclerosis of the bleeding vessel via endoscopy or by surgery
(definitive therapy, value = 1.0). Prevention is usually done thru a
combination of maintenance of adequate blood volume, oxygenation,
and cardiac function. H2 blockers which prevent stomach acid
secretion (Cimetidine and Ranitidine) or Sucralfate also help prevent
ulcers. Infection control, and prevention of coagulopathy (inability of
blood to clot) is also important.

Diagnostic Actions: 3. Order endoscopy (1 hr) to confirm upper GI bleed.

4. Frequent HCT (5 min) and ABG (20 min) if bleeding continues. 5.
Send for platelet levels (30 min), Coagulation factor levels (1 hr), serum
BUN (30 min), DIC Screen, BT, TT (all 1 hr), PT, PTT (30 min). 6. Monitor
temperature for hypothermia (true for any transfusion >4 units). 7.
Send serum Ca++ after infusion (possible citrate toxicity) (30 min). 8.
Also send K+ (10 min). 9. Monitor for possible transfusion reactions (10
min)

Node: Uncontrolled Vessel (pp = .15, less)

How Diagnosed: Low HCT and acute drop in MAP accompanied by large
increase in CT output.

Differential Diagnosis: None

Monitoring Actions: Increase monitoring of MAP, 02 Sat, CT out, PCWP,

PAD, CVP.

Therapeutic Actions: 1. Transfuse 1 unit of packed RBC's per every 2% the
patient is below normal HCT (treatment effective for all lower nodes but
not necessarily definitive therapy, value = .75). Continue to transfuse
and wait for evidence bleed is slowing down. 2. May need surgical
therapy if bleeding at high rate CT > 300 cc/hr or prolonged > 5 hr
(definitive therapy, value = 1.0).

Diagnostic Actions: 3. Frequent HCT (5 min) and ABG (20 min) if bleeding
continues. 4. Send for platelet levels (30 min), Coagulation factor levels
(1 hr), serum BUN (30 min), DIC Screen, BT, TT (all 1 hr), PT, PTT (30
min). §. Monitor temperature for hypothermia (true for any
transfusion >4 units). 6. Send serum Ca++ after infusion (possible
citrate toxicity) (30 min). 7. Also send K+ (10 min). 8. Monitor for
possible transfusion reactions (10 min)

Node: Non-mechanical Bleeding (pp = .10, less)

How Diagnosed: Anemic hypoxia (low HCT and low p0O2) with normal MAP
and PCWP, CVP, PAD and without obvious bleeding or excessive CT
output.

Differential Diagnosis: Low serum Ca++, Low Plt. Count, Uremic Bleeding,
Coagulation Factor Deficit

Monitoring Actions: Increase monitoring of MAP, CT output, O2 Sat, PCWP,
PAD, CVP. Monitor temperature for possible infection.

134




Therapeutic Actions: 1. Transfuse 1 unit of packed RBC's per every 2% the
patient is below normal HCT (treatment effective for all lower nodes but
not necessarily definitive therapy, value = .75).

Diagnostic Actions: 2. Frequent HCT (5 min) and ABG( 20 min) if bleeding
continues. 3. Send for platelet levels (30 min), Coagulation factor levels
(1 hr), serum BUN (30 min), DIC Screen, BT, TT (all 1 hr), PT, PTT (30
min). 4. If infection is suspected, send Blood cultures (24 hrs) and
begin empiric antibiotics. 5. Monitor temperature for hypothermia
(true for any transfusion >4 units). 6. Send serum Ca++ after infusion
(30 min) (possible citrate toxicity). 7. Also send K+ (10 min). 8.
Monitor for possible transfusion reactions (10 min).

Node: Coagulation Factor Deficiency (pp = .05, less)

How Diagnosed: PT (prothrombin time) is elevated in the case of vitamin K
dependent factor deficiency. In liver disease PT, APTT( activated partial
thromboplastin time) and TT (thrombin time) are all elevated.

Differential Diagnosis: Could be due to deficiency in either Vitamin K
dependent factors of non-Vitamin K dependent factors

Monitoring Actions: Increase monitoring of MAP, 02 Sat, CT output, PCWP,
PAD, CVP.

Therapeutic Actions: 1. Transfuse 500 cc FFP and 120 cc platelets ( nearly
definitive therapy, value = .95).

Diagnostic Actions: 2. Determine if the coagulation factors are Vitamin K
dependent factors or not by PT, PTT (30 min). 3. Monitor for possible
transfusion reactions (10 min). 4. Check LFT's for possible liver disease
if not already done (4 hrs).

Node: Vitamin K Dependent Coagulation Factor Deficiency (pp = .03, more)

How Diagnosed: PT (prothrombin time) is elevated in the case of vitamin K
dependent factor deficiency.

Differential Diagnosis: None

Monitoring Actions: Increase monitoring of MAP, 02 Sat, CT output, PCWP,
PAD, CVP.

Therapeutic Actions: 1. Acutely transfuse 500 cc FFP and 120 cc platelets
(definitive therapy - short term, value = .95). 2, IV Vitamin K
(definitive therapy - long term, value = 1.0).

Diagnostic Actions: 3. Monitor for possible transfusion reactions (10 min).
4. Check LFT's for possible liver disease if not already done (4 hrs). The
syndrome known as DIC (disseminated intrvascular coagulation) often
presents with elevated PT, low platelets, and high serum BUN together
in a critical patient.

Node: Non-Vitamin K dependent Coagulation Factor Deficiency (pp = .01, less)

How Diagnosed: PTT ( activated partial thromboplastin time) is elevated and
PT is normal.

Differential Diagnosis: None

Monitoring Actions: Increase monitoring of MAP, 02 Sat, CT output, PCWP,
PAD, CVP.

Therapeutic Actions: 1. Transfuse 500 cc FFP and 120 cc platelets
(definitive therapy, value = 1.0).

Diagnostic Actions: 2. Monitor for possible transfusion reactions (10 min).
3. Check LFT's for possible liver disease if not already done (4 hrs).

135




Node: Low Platelet Count (pp = .1, more)
How Diagnosed: CBC with manual platelet count of <100,000 per ul or low

level of functioning platelets due to post-CPB state.

Differential Diagnosis: None

Monitoring Actions: Increase monitoring of MAP, 02 Sat, CT output, PCWP,
PAD, CVP.

Therapeutic Actions: 1. Transfuse 120 cc platelets (definitive therapy,
value = 1.0).

Diagnostic Actions: 2. Monitor for possible transfusion reactions (10 min).

Node: Low Serum Calcium (pp = .05, same)

How Diagnosed: Ionized serum Ca++ less than 1.2 mg/dl. Bleeding or low HCT
with normal serum BUN and normal Plt count, PT, PTT.

Differential Diagnosis: None

Monitoring Actions: Increase monitoring of EKG Monitor, MAP, O2 Sat, CT
output, PCWP, PAD, CVP.

Therapeutic Actions: 1. Intravenous Calcium Gluconate (definitive
therapy, value = 1.0).

Diagnostic Actions: 2. Monitor for evidence of muscle twitches (2 hrs).
3. Send serum Ca++ (30 min).

Node: Uremic Bleeding (p = .05, more)

How Diagnosed: Bleeding or low HCT with elevated serum BUN and normal
Plt count, PT, PTT.

Differential Diagnosis: None

Monitoring Actions: Increase monitoring of MAP, O2 Sat, CT output, PCWP,
PAD, CVP.

Therapeutic Actions: 1.120 cc platelets and dDAVP (buying time, value = .6).
2. Consider dialysis (definitive therapy, value = 1.0).

Diagnostic Actions: 3. Monitor mental status for evidence of coma (10
min). 4. Monitor serum electrolytes (30 min). 5. Send LFT’s to check
liver function (4 hrs).

136




[AS90]

[AS93]

[AH93]

[BR87]

[BR84]

[BR86]

[CH88]

[CHO1]

[CL8S5]

[CN89]

[CL89]

[CO%0]

References

D. Ash and B. Hayes-Roth, Temporal representations in blackboard
architectures, Technical Report KSL-90-16, Knowledge Systems
Laboratory, Stanford University (1990).

D. Ash and B. Hayes-Roth, A comparison of action-based hierarchies
and decision trees for real-time performance, Proceedings of the
Eleventh National Conference on Artificial Intelligence (1993) 568-
573.

D. Ash, G. Gold, A. Seiver and B. Hayes-Roth, Guaranteeing real-time
response with limited resources, Artificial Intelligence in Medicine 5
(1993) 49-66.

I. Bratko, I. Mozetic and N. Lavrac, Automatic synthesis and
compression of cardiological knowledge, Machine Intelligence 11
(1987) 435-454.

L. Breiman, J. Friedman, R. Olshen and C. Stone. Classification and
Regression Trees, Monterey, Calif.: Wadsworth & Brooks (1984).

R. Brooks. A robust layered control system for a mobile robot, IEEE
Journal of Robotics and Automation (March, 1986) 14-23.

J. Cheng, U. Fayyad, K. Irani and Z. Qian, Improved decision trees: a
generalized version of ID3, Proceedings of the Fifth International
Conference on Machine Learning (1988) 100-108.

L. Chrisman and R. Simmons, Sensible planning: focusing perceptual
attention, Proceedings of the Ninth National Conference on Artificial
Intelligence (1991) 756-761.

W. Clancey, Heuristic classification, Artificial Intelligence 27 (1985)
289-350.

P. Clark and T. Niblett, The CN2 induction algorithm, Machine
Learning 3 (1989) 261-284.

J. Clarke, M. Niv, B. Webber, K. Fisherkeller, D. Southerland and B.
Ryack, TraumAID: a decision aid for managing trauma at various
levels of resources, Proceedings of the Thirteenth Annual Symposium
on Computer Applications in Medical Care, Washington, DC (1989).

G. Cooper, The computational complexity of probabilistic inference on
Bayesian belief networks, Artificial Intelligence 42 (1990) 353-405.

137




[DA94]

[DA8S]

[DE87]

[DB88]

[DE93]

[DR91]

[FA90]

[FA80]

[FA91]

[FA92]

[FI72]

[FO84]

[GA86]

[GI89]

V. Dabija, Deciding whether to plan to react, Ph.D. dissertation,
Computer Science Department, Stanford University (1994).

R. Davis and W. Hamscher, Model-based reasoning: troubleshooting,
Exploring Artificial Intelligence: Survey Talks from the National
Conference on Artificial Intelligence, ed. H. Shrobe (1988) 297-346.

J. De Kleer and B. Williams, Diagnosing multiple faults, Artificial
Intelligence 32 (1987) 97-130.

T. Dean and M. Boddy, An analysis of time-dependent planning, Proc.
Seventh Nat. Conf. on Artificial Intelligence (1988) 49-54.

T. Dean, L. Kaelbling, J. Kirman and A. Nicholson, Planning with
deadlines in stochastic domains, Proceedings of the Eleventh National
Conference on Artificial Intelligence (1993) 574-579.

J. Drakopoulos, FPR: A fuzzy pattern recognizer based on sigmoidals,
Technical Report KSL-91-75, Knowledge Systems Laboratory, Stanford
University (1991).

M. Factor, The process trellis software architecture for parallel real-
time monitors, Ph.D. Dissertation, Yale University, December, 1990.

L. Fagan, VM: representing time-dependent relations in a medical
setting, Ph.D. Dissertation, Computer Science Department, Stanford
University, June, 1980.

U. Fayyad, On the induction of decision trees for multiple concept
learning, Ph.D. dissertation, EECS Department, University of Michigan
(1991).

U. Fayyad, K. Irani, The attribute selection problem in decision tree
generation, Proceedings of the Tenth National Conference on
Artificial Intelligence (1992) 104-110.

R. Fikes, P. Hart and N. Nilsson, Learning and executing generalized
robot plans, Artificial Intelligence 3 (1972) 251-288.

K. Forbus, Qualitative process theory, Artificial Intelligence 24 (1984)
85-168.

A. Garvey, M. Hewett, V. Johnson, R. Schulman and B. Hayes-Roth, BB1
user manual -- Common Lisp version, Technical Report KSL-86-61,
Knowledge Systems Laboratory, Stanford University (1986).

M. Ginsburg, Universal planning: an (almost) universally bad idea, Al
Magazine 4 (Winter, 1989) 40-44.

138




[HR85]

[HR92]

(HE9Q]

[HE91]

[HE89]

[HO47]

[HO87]

[KA87]

[KA88]

[KA90]

[KU86]

[MU93]

[QU83]

B. Hayes-Roth, A blackboard architecture for control, Artificial
Intelligence 26 (1985) 251-321.

B. Hayes-Roth, R. Washington, D. Ash, R. Hewett, A. Collinot, A. Vina
and A. Seiver, Guardian: a prototype intelligent agent for intensive-
care monitoring, Artificial Intelligence in Medicine 4 (1992) 165-185.

J. Hendler, A. Agrawala, Mission critical planning: Al on the MARUTI
real-time operating system, Proc. Workshop on Innovative
Approaches to Planning, Scheduling, and Control, ed. K. Sycara (1990)
77-84.

M. Henrion, Search-based methods to bound diagnostic probabilities in
very large belief nets, Uncertainty and Artificial Intelligence:
Proceedings of the Seventh Conference (1991) 142-150.

R. Hewett, B. Hayes-Roth and A. Seiver, Using prime models in model-
based reasoning, Model-Based Reasoning Workshop, Eleventh
International Joint Conference on Artificial Intelligence (1989).

P. Hoel, Introduction to Mathematical Statistics, New York: John Wiley
and Sons (1947).

E. Horvitz, Reasoning about beliefs and actions under computational
resource constraints, Proc. 1987 AAAI Workshop on Uncertainty in
Artificial Intelligence (1987).

L. Kaelbling, An architecture for intelligent reactive systems,
Reasoning About Actions and Plans, eds. M. Georgeff and A. Lansky
(1987) 395-410.

L. Kaelbling, Goals as parallel program specifications, Proceedings of
the Seventh National Conference on Artificial Intelligence (1988).

L. Kaelbling, Specifying complex behavior for computer agents,
Proceedings: Workshop on Innovative Approaches to Planning,
Scheduling, and Control (1990) 433-438.

B. Kuipers, Qualitative simulation, Artificial Intelligence 29 (1986) 289-
338.

S. Murthy, S. Kasif, S. Salzberg and R. Beigel, Proceedings of the
Eleventh National Conference on Artificial Intelligence (1993) 322-
327.

R. Quinlan, Inductive inference as a tool for the construction of high-
performance programs, Machine Learning, eds. R. Michalski, T.
Mitchell, and J. Carbonell, Palo Alto, Calif.: Tioga (1983).

139




[QU90]

[RE87]

[RO89]

[RU91]

[RLO1]

[RL93]

[SC87]

[SH76]

[TO91]

[UC93]

[WA89]

[WA90]

[WI91]

R. Quinlan, Probabilistic decision trees, in Machine Learning: An
Artificial Intelligence Approach, Volume III, eds. Y. Kodratoff and R.
Michalski, San Mateo, Calif.: Morgan Kaufmann (1990).

R. Reiter, A theory of diagnosis from first principles, Artificial
Intelligence 32 (1987) 57-95.

S. Rosenschein, Synthesizing information-tracking automata from
environment descriptions, Proceedings of Conference on Principles of
Knowledge Representation and Reasoning, San Mateo, Calif.: Morgan
Kaufmann (1989).

S. Russell and E. Wefald, Principles of metareasoning, Artificial
Intelligence 49 (1991) 361-395.

G. Rutledge, Dynamic selection of models under time constraints,
Proceedings of Second Annual Conference on Al Simulation and
Planning in High Autonomy Systems, Cocoa Beach (1991) 60-67.

G. Rutledge, G. Thomsen, B. Farr, M. Tovar, ]J. Polaschek, I. Beinlich, L.
Sheiner and L. Fagan, The design and implementation of a ventilator-
management advisor, Artificial Intelligence in Medicine (1993).

M. Schoppers, Universal plans for reactive robots in unpredictable
environments, Proceedings of the Tenth International Joint
Conference on Artificial Intelligence (1987).

E. Shortliffe, MYCIN: Computer-based consultations in medical
therapeutics, New York: American Elsevier (1976).

D. Tong, Weaning patients from mechanical ventilation: a knowledge-
based system approach, Computer Methods and Programs in
Biomedicine 35 (1991) 267-278.

S. Uckun, B. Dawant and D. Lindstrom, Model-based reasoning in
intensive-care monitoring: the YAQ approach, Artificial Intelligence
in Medicine (1993).

R. Washington and B. Hayes-Roth, Input data management in real-time
Al systems, Proceedings of the Eleventh International Joint
Conference on Artificial Intelligence (1989) 250-255.

R. Washington and B. Hayes-Roth, Abstraction planning in real-time,
Technical Report KSL-90-15, Knowledge Systems Laboratory, Stanford
University (1990).

L. Widman, A model-based approach to the diagnosis of the cardiac
arrhythmias, Artificial Intelligence in Medicine 4 (1991) 1-19.

140




[XU92] J. Xu, S. Hyman and P. King, Knowledge-based flash evoked potential
recognition system, Artificial Intelligence in Medicine 4(2) (1992) 93-
109.

141




